Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Invest New Drugs ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789849

RESUMO

Worldwide, pancreatic cancer (PC) is a major health problem and almost 0.5 million people were diagnosed with PC in 2020. In the United States, more than 64,000 adults will be diagnosed with PC in 2023. PC is highly resistant to currently available treatments and standard of care chemotherapies cause serious side effects. Most PC patients are resistant to clinical therapies. Combination therapy has showed superior efficacy over single-agent treatment. However, most therapy has failed to show a significant improvement in overall survival due to treatment-related toxicity. Developing efficacious clinically useful PC therapies remains a challenge. Herein, we show the efficacy of an innovative pathway modulator, p53-Activator Wnt Inhibitor-2 (PAWI-2) against tumors arising from human pancreatic cancer stem cells (i.e., hPCSCs, FGß3 cells). PAWI-2 is a potent inhibitor of tumor growth. In the present study, we showed PAWI-2 potently inhibited growth of tumors from hPCSCs in orthopic xenograft models of both male and female mice. PAWI-2 worked in a non-toxic manner to inhibit tumors. Compared to vehicle-treated animals, PAWI-2 modulated molecular regulators of tumors. Anti-cancer results showed PAWI-2 in vivo efficacy could be correlated to in vitro potency to inhibit FGß3 cells. PAWI-2 represents a safe, new approach to combat PC.

2.
J Pediatr Orthop ; 44(4): e357-e360, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38273462

RESUMO

OBJECTIVE: Despite idiopathic toe walking (ITW) being a significant source of stress and anxiety for children and parents alike, little is known about the effect on health-related quality of life (HRQoL). The primary research question for this study was "Is ITW associated with impaired HRQoL, and is the degree of equinus contracture related to the degree of impairment?" METHODS: Twelve pediatric orthopaedic centers across the United Kingdom participated in this prospective, cross-sectional observational study of children younger than 18 years with ITW. Data were collected between May 2022 and July 2022. Using a standardized, piloted proforma, data collected included: demographics, toe-walking duration, passive ankle range of motion (Silfverskiold test), associated autism spectrum disorder or attention deficit hyperactivity disorder, previous and planned treatments, and Oxford Ankle Foot Questionnaire for Children scores. Domain scores were compared with a healthy control group and correlation was made to plantarflexion contracture using standard nonparametric statistical methods. RESULTS: Data were collected from 157 children. Significant reductions in physical, school and play, and emotional domain scores were noted compared with healthy controls. A significant moderate correlation was noted between passive ankle dorsiflexion and physical domain scores. There were no significant differences in Oxford Ankle Foot Questionnaire for Children scores among patient groups by treatment. CONCLUSIONS: ITW in children is associated with an impairment in HRQoL, not only across the physical domain but also the school and play and emotional domains. The more severe the equinus contracture, the worse the physical domain scores. LEVEL OF EVIDENCE: Level II-prospective cross-sectional observational study.


Assuntos
Transtorno do Espectro Autista , Pé Equino , Transtornos dos Movimentos , Criança , Humanos , Caminhada , Estudos Transversais , Qualidade de Vida , Estudos Prospectivos , Dedos do Pé , Marcha
3.
Invest New Drugs ; 39(1): 131-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32915418

RESUMO

Today, pancreatic cancer (PC) is a major health problem in the United States. It remains a challenge to develop efficacious clinically useful PC therapies. New avenues, based on translational approaches and innovative validated biomarkers could be a preclinical option to evaluate PC drug candidates or drug combinations before clinical trials. Herein, we describe evaluation of combination therapies by incorporating a novel pathway modulator, p53-Activator Wnt Inhibitor-2 (PAWI-2) with other FDA-approved cancer drugs that have been used in PC clinical trials. PAWI-2 is a potent inhibitor of drug-resistant PC cells that has been shown to selectively ameliorate human pancreatic cancer stem cells (i.e., hPCSCs, FGß3 cells). In the present study, we showed PAWI-2 produced therapeutic synergism with certain types of anti-cancer drugs. These drugs themselves oftentimes do not ameliorate PC cells (especially PCSCs) due to high levels of drug-resistance. PAWI-2 has the ability to rescue the potency of drugs (i.e., erlotinib, trametinib) and inhibit PC cell growth. Key molecular regulators of PAWI-2 could be used to predict synergistic/antagonistic effects between PAWI-2 and other anti-cancer drugs. Anti-cancer results showed potency could be quite accurately correlated to phosphorylation of optineurin (OPTN) in PC cells. Synergism/antagonism was also associated with inhibition of PCSC marker SOX2 that was observed in FGß3 cells. Synergism broadens the potential use of PAWI-2 as an adjunct chemotherapy in patients with PC that have developed resistance to first-line targeted therapies or chemotherapies.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Pancreáticas/patologia , Quinoxalinas/farmacologia , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinoxalinas/administração & dosagem , Fatores de Transcrição SOXB1/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 46: 128162, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062251

RESUMO

In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.


Assuntos
Doença do Sistema de Condução Cardíaco/patologia , Células-Tronco Pluripotentes Induzidas/química , Síndrome do QT Longo/patologia , Mexiletina/farmacologia , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Piridinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Mexiletina/química , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade
5.
Drug Metab Dispos ; 48(2): 106-115, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31727673

RESUMO

Oxycodone is used as a potent analgesic medication. Oxycodone is extensively metabolized. To fully describe its metabolism, the oxygenation of oxycodone to oxycodone N-oxide was investigated in hepatic preparations. The hypothesis tested was that oxycodone N-oxygenation was enzymatic and the amount of N-oxide detected was a consequence of both oxygenation and retro-reduction. Methods for testing the hypothesis included both in vitro and in vivo studies. Results indicated that oxycodone was N-oxygenated by the flavin-containing monooxygenase. Oxycodone N-oxide is chemically quite stable but in the presence of hepatic preparations and NADPH was retro-reduced to its parent compound oxycodone. Subsequently, oxycodone was metabolized to other metabolites including noroxycodone, noroxymorphone, and oxymorphone via cytochrome P-450. Retro-reduction of oxycodone N-oxide to oxycodone was facilitated by quinone reductase, aldehyde oxidase, and hemoglobin but not to a great extent by cytochrome P-450 or the flavin-containing monooxygenase. To confirm the in vitro observations, oxycodone was administered to rats and humans. In good agreement with in vitro results, substantial oxycodone N-oxide was observed in urine after oxycodone administration to rats and humans. Administration of oxycodone N-oxide to rats showed substantial amount of recovered oxycodone N-oxide. In vivo, noroxycodone was formed as a major rat urinary metabolite from oxycodone N-oxide presumably after retro-reduction to oxycodone and oxidative N-demethylation. To a lesser extent, oxycodone, noroxymorphone, and oxymorphone were observed as urinary metabolites. SIGNIFICANCE STATEMENT: This manuscript describes the N-oxygenation of oxycodone in vitro as well as in small animals and humans. A new metabolite was quantified as oxycodone N-oxide. Oxycodone N-oxide undergoes extensive retro-reduction to oxycodone. This re-establishes the metabolic profile of oxycodone and introduces new concepts about a metabolic futile cycle related to oxycodone metabolism.


Assuntos
Óxidos/metabolismo , Oxicodona/metabolismo , Analgésicos Opioides/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Oxigenases de Função Mista/metabolismo , Morfinanos/metabolismo , NADP/metabolismo , Oximorfona/metabolismo , Ratos
6.
Biochem J ; 476(22): 3505-3520, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31682720

RESUMO

The mosquitoes of the Anopheles and Aedes genus are some of the most deadly insects to humans because of their effectiveness as vectors of malaria and a range of arboviruses, including yellow fever, dengue, chikungunya, West Nile and Zika. The use of insecticides from different chemical classes is a key component of the integrated strategy against An. gambiae and Ae. aegypti, but the problem of insecticide resistance means that new compounds with different modes of action are urgently needed to replace chemicals that fail to control resistant mosquito populations. We have previously shown that feeding inhibitors of peptidyl dipeptidase A to both An. gambiae and Ae. aegypti mosquito larvae lead to stunted growth and mortality. However, these compounds were designed to inhibit the mammalian form of the enzyme (angiotensin-converting enzyme, ACE) and hence can have lower potency and lack selectivity as inhibitors of the insect peptidase. Thus, for the development of inhibitors of practical value in killing mosquito larvae, it is important to design new compounds that are both potent and highly selective. Here, we report the first structures of AnoACE2 from An. gambiae in its native form and with a bound human ACE inhibitor fosinoprilat. A comparison of these structures with human ACE (sACE) and an insect ACE homologue from Drosophila melanogaster (AnCE) revealed that the AnoACE2 structure is more similar to AnCE. In addition, important elements that differ in these structures provide information that could potentially be utilised in the design of chemical leads for selective mosquitocide development.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Anopheles/enzimologia , Proteínas de Insetos/química , Peptidil Dipeptidase A/química , Aedes/química , Aedes/enzimologia , Aedes/genética , Animais , Anopheles/química , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Drosophila melanogaster/química , Drosophila melanogaster/enzimologia , Fosinopril/análogos & derivados , Fosinopril/química , Humanos , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/química , Larva/química , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
7.
J Pharmacol Exp Ther ; 371(3): 703-712, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31582422

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer-related death for men in the United States. Approximately 35% of PCa recurs and is often transformed to castration-resistant prostate cancer (CRPCa), the most deadly and aggressive form of PCa. However, the CRPCa standard-of-care treatment (enzalutamide with abiraterone) usually has limited efficacy. Herein, we report a novel molecule (PAWI-2) that inhibits cellular proliferation of androgen-sensitive and androgen-insensitive cells (LNCaP and PC-3, respectively). In vivo studies in a PC-3 xenograft model showed that PAWI-2 (20 mg/kg per day i.p., 21 days) inhibited tumor growth by 49% compared with vehicle-treated mice. PAWI-2 synergized currently clinically used enzalutamide in in vitro inhibition of PCa cell viability and resensitized inhibition of in vivo PC-3 tumor growth. Compared with vehicle-treated mice, PC-3 xenograft studies also showed that PAWI-2 (20 mg/kg per day i.p., 21 days) and enzalutamide (5 mg/kg per day i.p., 21 days) inhibited tumor growth by 63%. Synergism was mainly controlled by the imbalance of prosurvival factors (e.g., Bcl-2, Bcl-xL, Mcl-1) and antisurvival factors (e.g., Bax, Bak) induced by affecting mitochondrial membrane potential/mitochondria dynamics. Thus, PAWI-2 utilizes a distinct mechanism of action to inhibit PCa growth independently of androgen receptor signaling and overcomes enzalutamide-resistant CRPCa. SIGNIFICANCE STATEMENT: Castration-resistant prostate cancer (CRPCa) is the most aggressive human prostate cancer (PCa) but standard chemotherapies for CRPCa are largely ineffective. PAWI-2 potently inhibits PCa proliferation in vitro and in vivo regardless of androgen receptor status and uses a distinct mechanism of action. PAWI-2 has greater utility in treating CRPCa than standard-of-care therapy. PAWI-2 possesses promising therapeutic potency in low-dose combination therapy with a clinically used drug (e.g., enzalutamide). This study describes a new approach to address the overarching challenge in clinical treatment of CRPCa.


Assuntos
Antineoplásicos/farmacologia , Feniltioidantoína/análogos & derivados , Piperazinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Quinoxalinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Benzamidas , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias da Próstata/patologia , Proteína Supressora de Tumor p53/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Anal Chem ; 90(1): 974-979, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172437

RESUMO

Toxicity from acute exposure to nerve agents and organophosphorus toxicants is due to irreversible inhibition of acetylcholinesterase (AChE) in the nervous system. AChE in red blood cells is a surrogate for AChE in the nervous system. Previously we developed an immunopurification method to enrich red blood cell AChE (RBC AChE) as a biomarker of exposure. The goal of the present work was to provide an alternative RBC AChE enrichment strategy, by binding RBC AChE to Hupresin affinity gel. AChE was solubilized from frozen RBC by addition of 1% Triton X-100. Insoluble debris was removed by centrifugation. The red, but not viscous, RBC AChE solution was loaded on a Hupresin affinity column. Hemoglobin and other proteins were washed off with 3 M NaCl, while retaining AChE bound to Hupresin. Denatured AChE was eluted with 1% trifluoroacetic acid. The same protocol was used for 20 mL of RBC AChE inhibited with a soman model compound. The acid denatured protein was digested with pepsin and analyzed by liquid chromatography tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. A targeted method identified the aged soman adduct on serine 203 in peptide FGESAGAAS. It was concluded that Hupresin can be used to enrich soman-inhibited AChE solubilized from 8 mL of frozen human erythrocytes, yielding a quantity sufficient for detecting soman exposure.


Assuntos
Acetilcolinesterase/análise , Cromatografia de Afinidade/métodos , Agentes Neurotóxicos/análise , Soman/análise , Acetilcolinesterase/química , Cromatografia de Afinidade/instrumentação , Ensaios Enzimáticos , Eritrócitos/enzimologia , Humanos , Agentes Neurotóxicos/química , Soman/química
9.
Bioorg Med Chem Lett ; 28(20): 3363-3367, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201292

RESUMO

The Notch signaling pathway is involved in cell proliferation and differentiation, and has been recognized as an active pathway in regenerating tissue and cancerous cells. Notch signaling inhibition is considered a viable approach to the treatment of a variety of conditions including colorectal cancer, pancreatic cancer, breast cancer and metastatic melanoma. The discovery that the b-annulated dihydropyridine FLI-06 (1) is an inhibitor of the Notch pathway with an EC50 ≈ 2.5 µM prompted us to screen a library of related analogs. After structure activity studies were conducted, racemic compound 7 was identified with an EC50 = 0.36 µM. Synthesis of individual enantiomers provided (+)-7 enantiomer with an EC50 = 0.13 µM, or about 20-fold the potency of 1.


Assuntos
Antineoplásicos/farmacologia , Di-Hidropiridinas/farmacologia , Receptor Notch1/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Células HCT116 , Humanos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Estereoisomerismo
10.
Bioorg Med Chem ; 26(15): 4441-4451, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30075999

RESUMO

For adult women in the United States, breast cancer is the most prevalent form of cancer. Compounds that target dysregulated signal transduction can be efficacious anti-cancer therapies. A prominent signaling pathway frequently dysregulated in breast cancer cells is the Wingless-related integration site (Wnt) pathway. The purpose of the work was to optimize a "hit" from a screening campaign. 76,000 compounds were tested in a Wnt transcription assay and revealed potent and reproducible "hit," compound 1. Medicinal chemistry optimization of 1 led to more potent and drug-like molecules, 19, 24 and 25 (i.e., Wnt pathway IC50 values = 11, 18 and 7 nM, respectively). The principal results showed compounds 19, 24 and 25 were potent anti-proliferative agents in breast cancer cell lines, MCF-7 (i.e., IC50 values = 10, 7 and 4 nM, respectively) and MDA-MB 231 (i.e., IC50 values = 13, 13 and 16 nM, respectively). Compound 19 synergized anti-proliferation with chemotherapeutic Doxorubicin in vitro. A major conclusion was that compound 19 enhanced anti-proliferation of Doxorubicin in vitro and in a xenograft animal model of breast cancer.


Assuntos
Antineoplásicos/química , Sulfonamidas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Nus , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Transplante Heterólogo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
11.
Chem Res Toxicol ; 30(10): 1897-1910, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28892361

RESUMO

Nerve agents and organophosphorus pesticides make a covalent bond with the active site serine of acetylcholinesterase (AChE), resulting in inhibition of AChE activity and toxic symptoms. AChE in red blood cells (RBCs) serves as a surrogate for AChE in the nervous system. Mass spectrometry analysis of adducts on RBC AChE could provide evidence of exposure. Our goal was to develop a method of immunopurifying human RBC AChE in quantities adequate for detecting exposure by mass spectrometry. For this purpose, we immobilized 3 commercially available anti-human acetylcholinesterase monoclonal antibodies (AE-1, AE-2, and HR2) plus 3 new monoclonal antibodies. The monoclonal antibodies were characterized for binding affinity, epitope mapping by pairing analysis, and nucleotide and amino acid sequences. AChE was solubilized from frozen RBCs with 1% (v/v) Triton X-100. A 16 mL sample containing 5.8 µg of RBC AChE was treated with a quantity of soman model compound that inhibited 50% of the AChE activity. Native and soman-inhibited RBC AChE samples were immunopurified on antibody-Sepharose beads. The immunopurified RBC AChE was digested with pepsin and analyzed by liquid chromatography tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. The aged soman-modified PheGlyGluSerAlaGlyAlaAlaSer (FGESAGAAS) peptide was detected using a targeted analysis method. It was concluded that all 6 monoclonal antibodies could be used to immunopurify RBC AChE and that exposure to nerve agents could be detected as adducts on the active site serine of RBC AChE.


Assuntos
Acetilcolinesterase/isolamento & purificação , Eritrócitos/enzimologia , Imunoprecipitação , Agentes Neurotóxicos/análise , Acetilcolinesterase/imunologia , Acetilcolinesterase/metabolismo , Humanos , Espectrometria de Massas
12.
Bioorg Med Chem ; 23(17): 5282-92, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26278027

RESUMO

Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure-activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Miócitos Cardíacos/citologia , Animais , Células Cultivadas , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Biochemistry ; 53(27): 4476-87, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24902043

RESUMO

Human butyrylcholinesterase (hBChE) is currently being developed as a detoxication enzyme for stoichiometric binding and/or catalytic hydrolysis of organophosphates. Herein, we describe the use of a molecular evolution method to develop novel hBChE variants with increased resistance to stereochemically defined nerve agent model compounds of soman, sarin, and cyclosarin. Novel hBChE variants (Y332S, D340H, and Y332S/D340H) were identified with an increased resistance to nerve agent model compounds that retained robust intrinsic catalytic efficiency. Molecular dynamics simulations of these variants revealed insights into the mechanism by which these structural changes conferred nerve agent model compound resistance.


Assuntos
Butirilcolinesterase/química , Substâncias para a Guerra Química/química , Compostos Organofosforados/química , Sarina/química , Soman/química , Butirilcolinesterase/genética , Butiriltiocolina/química , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/química , Evolução Molecular Direcionada , Humanos , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Compostos Organofosforados/toxicidade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sarina/toxicidade , Soman/toxicidade
14.
J Pharmacol Exp Ther ; 350(1): 171-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817033

RESUMO

A substituted aryl amide derivative of 6-naltrexamine--17-cyclopropylmethyl-3,14ß-dihydroxy-4,5α-epoxy-6ß-[(4'-trimethylfluoro)benzamido]morphinan-hydrochloride--(compound 5), previously shown to be a potent κ-opioid receptor antagonist, was used to characterize the physicochemical properties and efficacy to decrease alcohol self-administration in alcohol-preferring rats (P-rats) and binge-like P-rats. Previous studies showed that compounds closely related to compound 5 possessed favorable properties regarding penetration of the blood-brain barrier. Pharmacokinetic studies showed that compound 5 had acceptable bioavailability. In contrast to other κ-receptor antagonists, in particular norbinaltorphimine, compound 5 showed favorable drug-like properties. Based on these findings, further studies were done. Safety studies showed that compound 5 was not hepatotoxic at doses 200-fold greater than an efficacious dose. The effects of compound 5 or naltrexone on the hepatotoxicity of thiobenzamide were investigated. In contrast to naltrexone, which exacerbated thiobenzamide-mediated hepatotoxicity, compound 5 was observed to be hepatoprotective. Based on the physicochemical properties of compound 5, the compound was examined in rat animal models of alcohol self-administration. The inhibition of ethanol self-administration by compound 5 in alcohol-dependent and alcohol-nondependent P-rats trained to self-administer a 10% (w/v) ethanol solution, using operant techniques, showed very potent efficacy (i.e., estimated ED50 values of 4-5 µg/kg). In a binge-like P-rat animal model, inhibition of alcohol self-administration by compound 5 had an estimated ED50 value of 8 µg/kg. The results suggest that compound 5 is a potent drug-like κ-opioid receptor antagonist of utility in alcohol cessation medications development.


Assuntos
Etanol/administração & dosagem , Morfinanos/farmacologia , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Alanina Transaminase/sangue , Alanina Transaminase/efeitos dos fármacos , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/sangue , Condicionamento Operante/efeitos dos fármacos , Masculino , Morfinanos/efeitos adversos , Morfinanos/farmacocinética , Naltrexona/efeitos adversos , Antagonistas de Entorpecentes/efeitos adversos , Antagonistas de Entorpecentes/farmacocinética , Ratos , Ratos Endogâmicos , Autoadministração , Tioamidas/antagonistas & inibidores
15.
J Biochem Mol Toxicol ; 28(1): 23-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23943350

RESUMO

A countermeasure that protects the brain from organophosphate toxicity is an unmet need. Few small molecule reactivators that can cross the blood brain barrier and reactivate brain acetyl cholinesterases have been reported. Herein, we describe preclinical investigations of a new class of amidine-oxime reactivator of cholinesterases with improved potency and blood brain barrier permeability. (Z)-N-((E)-1-(Dimethylamino)-2-(hydroxyimino)ethylidene)butan-1-aminium chloride, 1, is zwitterionic at physiological pH but possesses increased oxime nucleophilicity because of the adjacent amidine functionality. The amidine-oximes reported herein were observed to be nontoxic (up to 200 mg/kg in vivo) and are chemically and metabolically stable. The results presented herein show that uncharged amidine-oxime reactivators such as 1 can penetrate the blood brain barrier in animals and protect from the toxicity of nerve agent model compounds.


Assuntos
Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Oximas/farmacologia , Animais , Barreira Hematoencefálica , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Reativadores da Colinesterase/farmacocinética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Oximas/farmacocinética , Ratos , Ratos Sprague-Dawley
16.
J AOAC Int ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467139

RESUMO

BACKGROUND: Antibiotic residues in milk are a well-known hazard in the dairy food chain. Detection methods for these residues, such as non-specific microbiological inhibitor tests or group-specific receptor tests, respectively, are relatively inexpensive, easy to use and widely applied to ensure food safety. In contrast, specific detection by liquid chromatography tandem mass spectrometry (LC-MS/MS) - although a critical, complimentary method to confirm the results of non-specific testing-is relatively costly, time consuming and laborious. Furthermore, sample processing before LC-MS/MS analysis requires unique preparation procedures for different groups of antibiotic compounds. OBJECTIVE: To simplify and speed up specific antibiotic residue detection, a low-cost, passive and single-step method to fractionate analytes in raw milk was developed. METHODS: Untreated raw milk was fractionated into its water and fat/protein phases using a FraMiTrACR® AB fractionation unit. The water fraction was then analyzed by LC-MS/MS. The analyte fractionation method was evaluated against a QuEChERS based method for sample preparation. RESULTS: Our method allows qualitative and quantitative detection of substances from the Penicillin, Cephalosporin, Macrolide, Lincosamide, Sulfonamide, Tetracycline and Fluoroquinolone groups of antibiotics. Detection limits are below the legally prescribed maximum residue levels, allowing reliable, specific and rapid validation of a positive result in non-specific microbiological inhibitor tests. CONCLUSION: Analyte fractionation by FraMiTrACR® AB is a faster alternative to QuEChERS based sample preparation for the detection of antibiotic substances in milk. HIGHLIGHT: This method describes a low-cost, environmentally friendly, passive and single-step milk analyte fractionation. As an alternative to QuEChERS based preparation, this fractionation method simplifies and speeds up the process for specific antibiotic residue detection.

17.
J Pharmacol Exp Ther ; 344(2): 531-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192655

RESUMO

A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals.


Assuntos
Anticorpos Monoclonais , Substâncias para a Guerra Química/metabolismo , Exposição Ambiental/análise , Compostos Organofosforados/metabolismo , Albumina Sérica/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos/química , Antígenos/imunologia , Biomarcadores/sangue , Linhagem Celular Tumoral , Substâncias para a Guerra Química/química , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Intoxicação por Organofosfatos/sangue , Compostos Organofosforados/química , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Albumina Sérica/química , Espectrometria de Massas por Ionização por Electrospray , Tirosina/química , Tirosina/metabolismo
18.
Chem Res Toxicol ; 26(4): 584-92, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23469927

RESUMO

Soman forms a stable, covalent bond with tyrosine 411 of human albumin, with tyrosines 257 and 593 in human transferrin, and with tyrosine in many other proteins. The pinacolyl group of soman is retained, suggesting that pinacolyl methylphosphonate bound to tyrosine could generate specific antibodies. Tyrosine in the pentapeptide RYGRK was covalently modified with soman simply by adding soman to the peptide. The phosphonylated-peptide was linked to keyhole limpet hemocyanin, and the conjugate was injected into rabbits. The polyclonal antiserum recognized soman-labeled human albumin, soman-mouse albumin, and soman human transferrin but not nonphosphonylated control proteins. The soman-labeled tyrosines in these proteins are surrounded by different amino acid sequences, suggesting that the polyclonal recognizes soman-tyrosine independent of the amino acid sequence. Antiserum obtained after 4 antigen injections over a period of 18 weeks was tested in a competition ELISA where it had an IC50 of 10(-11) M. The limit of detection on Western blots was 0.01 µg (15 picomoles) of soman-labeled albumin. In conclusion, a high-affinity, polyclonal antibody that specifically recognizes soman adducts on tyrosine in a variety of proteins has been produced. Such an antibody could be useful for identifying secondary targets of soman toxicity.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Soman/imunologia , Tirosina/imunologia , Animais , Antígenos/química , Antígenos/metabolismo , Ensaio de Imunoadsorção Enzimática , Hemocianinas/química , Hemocianinas/imunologia , Humanos , Camundongos , Oligopeptídeos/química , Oligopeptídeos/imunologia , Coelhos , Soman/química , Soman/metabolismo , Tirosina/química , Tirosina/metabolismo
19.
Circ Res ; 109(4): 360-4, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21737789

RESUMO

RATIONALE: Human embryonic stem cells can form cardiomyocytes when cultured under differentiation conditions. Although the initiating step of mesoderm formation is well characterized, the subsequent steps that promote for cardiac lineages are poorly understood and limit the yield of cardiomyocytes. OBJECTIVE: Our aim was to develop a human embryonic stem cell-based high-content screening assay to discover small molecules that drive cardiogenic differentiation after mesoderm is established to improve our understanding of the biology involved. Screening of libraries of small-molecule pathway modulators was predicted to provide insight into the cellular proteins and signaling pathways that control stem cell cardiogenesis. METHODS AND RESULTS: Approximately 550 known pathway modulators were screened in a high-content screening assay, with hits being called out by the appearance of a red fluorescent protein driven by the promoter of the cardiac-specific MYH6 gene. One potent small molecule was identified that inhibits transduction of the canonical Wnt response within the cell, which demonstrated that Wnt inhibition alone was sufficient to generate cardiomyocytes from human embryonic stem cell-derived mesoderm cells. Transcriptional profiling of inhibitor-treated compared with vehicle-treated samples further indicated that inhibition of Wnt does not induce other mesoderm lineages. Notably, several other Wnt inhibitors were very efficient in inducing cardiogenesis, including a molecule that prevents Wnts from being secreted by the cell, which confirmed that Wnt inhibition was the relevant biological activity. CONCLUSIONS: Pharmacological inhibition of Wnt signaling is sufficient to drive human mesoderm cells to form cardiomyocytes; this could yield novel tools for the benefit of pharmaceutical and clinical applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Miosinas Cardíacas/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Mesoderma/citologia , Mesoderma/metabolismo , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Fatores de Tempo , Transfecção , Proteínas Wnt/metabolismo , Proteína Vermelha Fluorescente
20.
J Pharmacol Exp Ther ; 343(3): 673-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22956723

RESUMO

Human butyrylcholinesterase (hBChE) is currently being developed as a detoxication enzyme for the catalytic hydrolysis or stoichiometric binding of organophosphates (OPs). Previously, rationally designed hBChE mutants (G117H and E197Q) were reported in the literature and showed the feasibility of engineering OP hydrolytic functional activity into hBChE. However, the OP hydrolysis rate for G117H is too low for clinical utility. Additional OP-resistant hBChE variants with greater hydrolysis rates are needed as OP nerve-agent countermeasures for therapeutic utility. As described herein, a directed molecular evolution process was used to identify amino acid residues that contribute to OP-resistant functional activity of hBChE variants. In this article, we describe the development and validation of a novel method to identify hBChE variants with OP-resistant functional activity (decreased rate of OP inhibition). The method reported herein used an adenoviral protein expression system combined with a functional screening protocol of OP nerve-agent model compounds that have been shown to have functional properties similar to authentic OP nerve-agent compounds. The hBChE screening method was robust for transfection efficiency, library diversity, and reproducibility of positive signals. The screening approach not only identified the previously reported hBChE G117H variant, but also identified a series of additional hBChE variants, including hBChE G117N, G117R, E197C, and L125V, that exhibited OP-resistant functional activities not reported previously. The mammalian functional screening approach can serve as a cornerstone for further optimization and screening for OP-resistant hBChEs for potential therapeutic applications.


Assuntos
Bioensaio/métodos , Butirilcolinesterase/química , Butirilcolinesterase/genética , Substâncias para a Guerra Química/toxicidade , Mutação , Compostos Organofosforados/toxicidade , Adenoviridae/genética , Animais , Biocatálise , Butirilcolinesterase/metabolismo , Células CHO , Domínio Catalítico , Técnicas de Cultura de Células , Substâncias para a Guerra Química/química , Clonagem Molecular , Cricetinae , Evolução Molecular Direcionada , Desenho de Fármacos , Vetores Genéticos , Células HEK293 , Humanos , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Compostos Organofosforados/química , Engenharia de Proteínas , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa