Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 203(4383): 892-4, 1979 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17771724

RESUMO

The dissipation of tidal energy in Jupiter's satellite Io is likely to have melted a major fraction of the mass. Consequences of a largely molten interior may be evident in pictures of Io's surface returned by Voyager I.

2.
Science ; 172(3984): 716-8, 1971 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17780967

RESUMO

Magnetic compressions intermittently observed outside the lunar wake in the solar wind may be limb shocks caused by the presence of local regions of permanent magnetism on the lunar limb. Observable compression would be due to regions of length scale (radius) at least as great as several tens of kilometers and field strength greater, similar 10 gammas. Thousands of such regions might exist on the lunar surface. The steady magnetic field measured at the Apollo 12 site probably has length scale less, similar 10 kilometers and probably does not produce an observable limb shock.

3.
Icarus ; 84(1): 254-60, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11538400

RESUMO

The refractory meteorite inclusions known as CAIs (calcium-aluminum rich inclusions) display melted rims that were produced by thermal events of only a few seconds duration. We show that gas dynamic deceleration in a temporary atmosphere around an accreting parent body, produced by gas release during accretion, could provide a regime of sufficiently high gas density and small scale height to achieve partial melting of the CAIs. In addition, the presence of dust in the atmosphere would increase the gradient of pressure with height (i.e., effectively reduce the scale height), lower the rate of blowoff (thus keeping more gas around the body), as well as allow dust particles to become trapped in the partially melted material as is observed in some cases. Thus, CAIs may be regarded as probes of a primitive atmosphere by virtue of the thermal and mineralogical alteration that occurred upon their passage through the atmosphere.


Assuntos
Alumínio/análise , Cálcio/análise , Meteoroides , Modelos Teóricos , Atmosfera , Poeira , Temperatura Alta , Matemática
4.
Icarus ; 104: 97-109, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-11540090

RESUMO

A theoretical model of aerodynamic heating of a meteoric particle upon entry into a parent body atmosphere is presented. The model includes the effects of melting, vaporization, and heat conduction into the particle interior. Properties of chondrule rims are interpreted in the context of the model. We conclude that the formation of true melt rims by atmospheric entry requires that a low-melting-temperature component be fractionated in the outer part of the chondrule prior to rim formation, and that the range of thermal alteration effects observed in UOC chondrites reflects the variety of encounter conditions and chondrite types. Further tests of the model are suggested.


Assuntos
Atmosfera , Poeira Cósmica/análise , Meio Ambiente Extraterreno , Temperatura Alta , Meteoroides , Modelos Químicos , Gases/química , Tamanho da Partícula , Sistema Solar , Termodinâmica
5.
Icarus ; 91: 76-92, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-11538105

RESUMO

Observations and experimental evidence are presented to support the hypothesis that high-speed impact into a parent body regolith can best explain certain textures and compositions observed for rims on some chondrules. A study of 19 interclastic rimmed chondrules in the Weston (H 3/4) ordinary chondrite shows that two main rim types are present on porphyritic olivine-pyroxene (POP) and porphyritic pyroxene (PP) chondrules: granular and opaque rims. Granular rims are composed of welded, fine-grained host chondrule fragments. Bulk compositions of granular rims vary among chondrules, but each rim is compositionally dependent on that of the host chondrule. Opaque rims contain mineral and glass compositions distinctly different from those of the host, partially reacted chondrule mantle components, and some matrix grains. Opaque rims are greatly enriched in FeO (up to 63 wt%). The original chondrule pyroxene compositional zonation patterns and euhedral grain outlines are discontinuous at the chondrule/rim interface. Opaque rims are dominated by fayalitic olivine (Fa92-56), with high Al2O3 content (0.78-3.15%), which makes them distinctly different from primary olivine, but similar to Fe-olivine in chondrule rims of other meteorites. Thin zones of chondrule minerals adjacent to the present rims are intermediate in FeO content between the Mg-rich interior and the Fe-rich rim, which indicates a reaction relationship. Regardless of conclusions drawn regarding other types of rims, granular and opaque rim characteristics appear to be inconsistent with nebular condensation, in that host and matrix fragments are included within the rim. We have initiated a series of experiments, using the Ames two-stage light gas gun, to investigate the hypothesis that the Weston chondrule rims are the result of thermal and mechanical alteration upon impact into a low-density medium. Clusters of approximately 200-micron-sized silicate particles were fired into aerogel (density = 0.1 g cm-3) at velocities of 5.6, 4.7, and 2.2 km sec-1. Recovered grains show characteristics that range from fragmented projectile grains mixed with melted aerogel that nearly rim the grains to grains that have melted aerogel clumps mixed with partially melted projectile. These experimental results demonstrate that rim-like thermal and mechanical alteration of projectiles can result from a high-velocity encounter with a low-density target. Therefore, experiments using appropriately chosen projectile and target materials can provide a test of the hypothesis that chondrule rims common to Weston and possibly other ordinary chondrites were formed by such a process.


Assuntos
Compostos de Ferro/química , Compostos de Magnésio/química , Minerais/química , Silicatos/química , Sistema Solar , Fenômenos Astronômicos , Astronomia , Cristalização , Fenômenos Geológicos , Geologia , Vidro , Planetas Menores , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa