Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 548(7668): 434-438, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28836603

RESUMO

Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons-which are key elements of topological quantum computing-fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire 'hashtags' reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

3.
Nano Lett ; 17(4): 2690-2696, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28355877

RESUMO

Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.

4.
Nano Lett ; 16(6): 3482-6, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27121534

RESUMO

Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one-dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally we study the contribution of orbital effects to the sub-band dispersion for different orientation of the magnetic field, observing a near-degeneracy between the second and third sub-bands.

5.
ACS Nano ; 14(11): 14605-14615, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32396328

RESUMO

Gate-tunable junctions are key elements in quantum devices based on hybrid semiconductor-superconductor materials. They serve multiple purposes ranging from tunnel spectroscopy probes to voltage-controlled qubit operations in gatemon and topological qubits. Common to all is that junction transparency plays a critical role. In this study, we grow single-crystalline InAs, InSb, and InAs1-xSbx semiconductor nanowires with epitaxial Al, Sn, and Pb superconductors and in situ shadowed junctions in a single-step molecular beam epitaxy process. We investigate correlations between fabrication parameters, junction morphologies, and electronic transport properties of the junctions and show that the examined in situ shadowed junctions are of significantly higher quality than the etched junctions. By varying the edge sharpness of the shadow junctions, we show that the sharpest edges yield the highest junction transparency for all three examined semiconductors. Further, critical supercurrent measurements reveal an extraordinarily high ICRN, close to the KO-2 limit. This study demonstrates a promising engineering path toward reliable gate-tunable superconducting qubits.

6.
Nat Commun ; 8: 16025, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28681843

RESUMO

Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

7.
Nat Nanotechnol ; 10(7): 593-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25961510

RESUMO

Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

8.
Sci Rep ; 5: 12842, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26239953

RESUMO

Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥ 40 minutes--allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation.


Assuntos
Meios de Contraste/química , Fluoroscopia/métodos , Imageamento por Ressonância Magnética/métodos , Silício/química , Animais , Fluoroscopia/instrumentação , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Camundongos , Camundongos Transgênicos , Imagens de Fantasmas , Fatores de Tempo , Cateteres Urinários , Dispositivos de Acesso Vascular
9.
ACS Nano ; 7(2): 1609-17, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23350651

RESUMO

We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²9Si spin-lattice relaxation (T1) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Nanotecnologia/métodos , Silício/química , Isótopos , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Temperatura
10.
ACS Nano ; 3(12): 4003-8, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19950973

RESUMO

Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.


Assuntos
Meios de Contraste/química , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Nanoestruturas/química , Silício/química , Titânio/química , Cristalização/métodos , Substâncias Macromoleculares/química , Imageamento por Ressonância Magnética/instrumentação , Teste de Materiais , Conformação Molecular , Nanomedicina/métodos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa