Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949276

RESUMO

We show that optimal control of the electron dynamics is able to prepare molecular ground states, within chemical accuracy, with evolution times approaching the bounds imposed by quantum mechanics. We propose a specific parameterization of the molecular evolution only in terms of interaction already present in the molecular Hamiltonian. Thus, the proposed method solely utilizes quantum simulation routines, retaining their favorable scalings. Due to the intimate relationships between variational quantum algorithms and optimal control, we compare, when possible, our results with state-of-the-art methods in the literature. We found that the number of parameters needed to reach chemical accuracy and algorithmic scaling is in line with compact adaptive strategies to build variational Ansätze. The algorithm, which is also suitable for quantum simulators, is implemented by emulating a digital quantum processor (up to 16 qubits) and tested on different molecules and geometries spanning different degrees of electron correlation.

2.
Nano Lett ; 23(7): 2719-2725, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010208

RESUMO

Hot electron (HE) photocatalysis is one of the most intriguing fields of nanoscience, with a clear potential for technological impact. Despite much effort, the mechanisms of HE photocatalysis are not fully understood. Here we investigate a mechanism based on transient electron spillover on a molecule and subsequent energy release into vibrational modes. We use state-of-the-art real-time Time Dependent Density Functional Theory (rt-TDDFT), simulating the dynamics of a HE moving within linear chains of Ag or Au atoms, on which CO, N2, or H2O are adsorbed. We estimate the energy a HE can release into adsorbate vibrational modes and show that certain modes are selectively activated. The energy transfer strongly depends on the adsorbate, the metal, and the HE energy. Considering a cumulative effect from multiple HEs, we estimate this mechanism can transfer tenths of an eV to molecular vibrations and could play an important role in HE photocatalysis.

3.
ACS Phys Chem Au ; 4(3): 202-225, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38800726

RESUMO

The rise of modern computer science enabled physical chemistry to make enormous progresses in understanding and harnessing natural and artificial phenomena. Nevertheless, despite the advances achieved over past decades, computational resources are still insufficient to thoroughly simulate extended systems from first principles. Indeed, countless biological, catalytic and photophysical processes require ab initio treatments to be properly described, but the breadth of length and time scales involved makes it practically unfeasible. A way to address these issues is to couple theories and algorithms working at different scales by dividing the system into domains treated at different levels of approximation, ranging from quantum mechanics to classical molecular dynamics, even including continuum electrodynamics. This approach is known as multiscale modeling and its use over the past 60 years has led to remarkable results. Considering the rapid advances in theory, algorithm design, and computing power, we believe multiscale modeling will massively grow into a dominant research methodology in the forthcoming years. Hereby we describe the main approaches developed within its realm, highlighting their achievements and current drawbacks, eventually proposing a plausible direction for future developments considering also the emergence of new computational techniques such as machine learning and quantum computing. We then discuss how advanced multiscale modeling methods could be exploited to address critical scientific challenges, focusing on the simulation of complex light-harvesting processes, such as natural photosynthesis. While doing so, we suggest a cutting-edge computational paradigm consisting in performing simultaneous multiscale calculations on a system allowing the various domains, treated with appropriate accuracy, to move and extend while they properly interact with each other. Although this vision is very ambitious, we believe the quick development of computer science will lead to both massive improvements and widespread use of these techniques, resulting in enormous progresses in physical chemistry and, eventually, in our society.

4.
J Chem Theory Comput ; 18(12): 7457-7469, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36351289

RESUMO

Quantum chemical calculations on quantum computers have been focused mostly on simulating molecules in the gas phase. Molecules in liquid solution are, however, most relevant for chemistry. Continuum solvation models represent a good compromise between computational affordability and accuracy in describing solvation effects within a quantum chemical description of solute molecules. In this work, we extend the variational quantum eigensolver to simulate solvated systems using the polarizable continuum model. To account for the state dependent solute-solvent interaction we generalize the variational quantum eigensolver algorithm to treat non-linear molecular Hamiltonians. We show that including solvation effects does not impact the algorithmic efficiency. Numerical results of noiseless simulations for molecular systems with up to 12 spin-orbitals (qubits) are presented. Furthermore, calculations performed on a simulated noisy quantum hardware (IBM Q, Mumbai) yield computed solvation free energies in fair agreement with the classical calculations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa