Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 53(9): 5818-5832, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26497036

RESUMO

Selenoprotein T (SelT) is a newly discovered thioredoxin-like protein, which is abundantly but transiently expressed in the neural lineage during brain ontogenesis. Because its physiological function in the brain remains unknown, we developed a conditional knockout mouse line (Nes-Cre/SelTfl/fl) in which SelT gene is specifically disrupted in nerve cells. At postnatal day 7 (P7), these mice exhibited reduced volume of different brain structures, including hippocampus, cerebellum, and cerebral cortex. This phenotype, which is observed early during the first postnatal week, culminated at P7 and was associated with increased loss of immature neurons but not glial cells, through apoptotic cell death. This phenomenon was accompanied by elevated levels of intracellular reactive oxygen species, which may explain the increased neuron demise and reduced brain structure volumes. At the second postnatal week, an increase in neurogenesis was observed in the cerebellum of Nes-Cre/SelTfl/fl mice, suggesting the occurrence of developmental compensatory mechanisms in the brain. In fact, the brain volume alterations observed at P7 were attenuated in adult mice. Nevertheless, SelT mutant mice exhibited a hyperactive behavior, suggesting that despite an apparent morphological compensation, SelT deficiency leads to cerebral malfunction in adulthood. Altogether, these results demonstrate that SelT exerts a neuroprotective role which is essential during brain development, and that its loss impairs mice behavior.


Assuntos
Comportamento Animal , Hipercinese/metabolismo , Malformações do Sistema Nervoso/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Selenoproteínas/deficiência , Animais , Animais Recém-Nascidos , Apoptose , Astrócitos/metabolismo , Encéfalo/patologia , Proliferação de Células , Sobrevivência Celular , Homeostase , Hipercinese/patologia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/patologia , Malformações do Sistema Nervoso/patologia , Nestina/metabolismo , Neurogênese , Neurônios/metabolismo , Neurônios/patologia , Tamanho do Órgão , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/genética
2.
Antioxid Redox Signal ; 24(11): 557-74, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26866473

RESUMO

AIMS: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. RESULTS: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. INNOVATION: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. CONCLUSIONS: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Oxirredutases/metabolismo , Doença de Parkinson/metabolismo , Selenoproteínas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotoxinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Selenoproteínas/deficiência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa