Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Vac Sci Technol A ; 42(2): 023416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328692

RESUMO

Organic thin films are of great interest due to their intriguing interfacial and functional properties, especially for device applications such as thin-film transistors and sensors. As their thickness approaches single nanometer thickness, characterization and interpretation of the extracted data become increasingly complex. In this study, plasma polymerization is used to construct ultrathin films that range in thickness from 1 to 20 nm, and time-of-flight secondary ion mass spectrometry coupled with principal component analysis is used to investigate the effects of film thickness on the resulting spectra. We demonstrate that for these cross-linked plasma polymers, at these thicknesses, the observed trends are different from those obtained from thicker films with lower degrees of cross-linking: contributions from ambient carbon contamination start to dominate the mass spectrum; cluster-induced nonlinear enhancement in secondary ion yield is no longer observed; extent of fragmentation is higher due to confinement of the primary ion energy; and the size of the primary ion source also affects fragmentation (e.g., Bi1 versus Bi5). These differences illustrate that care must be taken in choosing the correct primary ion source as well as in interpreting the data.

2.
Sens Actuators B Chem ; 3322021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33519092

RESUMO

MicroRNAs (miRNAs) are important post-transcriptional gene regulators and can serve as potential biomarkers for many diseases. Most of the current miRNA detection techniques require purification from biological samples, amplification, labeling, or tagging, which makes quantitative analysis of clinically relevant samples challenging. Here we present a new strategy for the detection of miRNAs with uniformity over a large area based on signal amplification using enzymatic reactions and measurements using time-of-flight secondary ion mass spectrometry (ToF-SIMS), a sensitive surface analysis tool. This technique has high sequence specificity through hybridization with a hairpin DNA probe and allows the identification of single-base mismatches that are difficult to distinguish by conventional mass spectrometry. We successfully detected target miRNAs in biological samples without purification, amplification, or labeling of target molecules. In addition, by adopting a well-known chromogenic enzymatic reaction from the field of biotechnology, we extended the use of enzyme-amplified signal enhancement ToF (EASE-ToF) to protein detection. Our strategy has advantages with respect to scope, quantification, and throughput over the currently available methods, and is amenable to multiplexing based on the outstanding molecular specificity of mass spectrometry (MS). Therefore, our technique not only has the potential for use in clinical diagnosis, but also provides evidence that MS can serve as a useful readout for biosensing to perform multiplexed analysis extending beyond the limitations of existing technology.

3.
Chem Soc Rev ; 49(11): 3278-3296, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32390029

RESUMO

Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required.


Assuntos
Materiais Biocompatíveis/química , Animais , Dimetilpolisiloxanos/análise , Humanos , Hidrocarbonetos/análise , Espectrometria de Massas , Microscopia de Varredura por Sonda , Óleos/análise , Dispositivos Ópticos , Espectroscopia Fotoeletrônica , Sais/análise , Solventes/análise , Propriedades de Superfície , Síncrotrons
4.
J Vac Sci Technol A ; 38(6): 063208, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33281279

RESUMO

We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.

5.
Langmuir ; 35(24): 7848-7857, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117724

RESUMO

Optimizing protocols so that the structure of the collagen fibers in the extracellular matrix remains intact during the decellularization process requires techniques with high structural sensitivity, especially for the surface region of the collagen fibers. Here, we demonstrate that vibrational sum-frequency scattering (SFS) spectroscopy in the protein-specific amide I region provides vibrational spectra and scattering patterns characteristic of protein fiber networks self-assembled in vitro from collagen type I, which are kept in aqueous environments during the analysis. At scattering angles away from the phase-matched direction, the relative strengths of various polarization combinations are highly reproducible, and changes in their ratios can be followed in real time during exposure to sodium dodecyl sulfate surfactant solutions. For the fibers in this work, a scattering angle of about 22° provided specificity for the surface region of the fibers, as it allowed monitoring of immediate structural changes during the surfactant exposure. With further development, we hypothesize that the information from the SFS characterization of collagen fibers may complement information from other techniques with sensitivity to the overall structure, such as second-harmonic generation imaging and infrared spectroscopy, and provide a more complete understanding of fiber molecular structures and interactions during exposure to various environments and conditions.


Assuntos
Colágeno/análise , Colágeno/química , Espectrofotometria/métodos , Tensoativos/química , Dodecilsulfato de Sódio/química , Vibração
6.
Anal Chem ; 88(7): 3917-25, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26950247

RESUMO

Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, nonspherical, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis, SESSA spectral modeling indicated that washed Au/Ag-core-shell NPs were stabilized with a 0.8 nm layer of sodium citrate and a 0.05 nm (one wash) or 0.025 nm (two wash) layer of adventitious hydrocarbon, but did not fully account for the observed XPS signal from the Au-core. This was addressed by a series of simulations and normalizations to account for contributions of NP nonsphericity and off-centered Au-cores. Both of these nonuniformities reduce the effective Ag-shell thickness, which effect the Au-core photoelectron intensity. The off-centered cores had the greatest impact for the particles in this study. When the contributions from the geometrical nonuniformities are included in the simulations, the SESSA generated elemental compositions that matched the XPS elemental compositions. This work demonstrates how spectral modeling software such as SESSA, when combined with experimental XPS and STEM measurements, advances the ability to quantitatively assess overlayer thicknesses for multilayer core-shell NPs and deal with complex, nonideal geometrical properties.


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Prata/análise , Microscopia Eletrônica de Transmissão e Varredura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Software , Propriedades de Superfície
7.
Langmuir ; 32(13): 3207-16, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26977542

RESUMO

The adsorption of single-component bovine serum albumin (BSA), bovine fibrinogen (Fgn), and bovine immunoglobulin G (IgG) films as well as multicomponent bovine plasma films onto bare and sodium styrenesulfonate (NaSS)-grafted gold substrates was characterized. The adsorption isotherms, measured via X-ray photoelectron spectroscopy, showed that at low solution concentrations all three single-component proteins adsorb with higher affinity onto gold surfaces compared to NaSS surfaces. However, at higher concentrations, NaSS surfaces adsorb the same or more total protein than gold surfaces. This may be because proteins that adsorb onto NaSS undergo structural rearrangements, resulting in a larger fraction of irreversibly adsorbed species over time. Still, with the possible exception of BSA adsorbed onto gold, neither surface appeared to have saturated at the highest protein solution concentration studied. Principal component (PC) analysis of amino acid mass fragments from time-of-flight secondary ion mass spectra distinguished between the same protein adsorbed onto NaSS and gold surfaces, suggesting that proteins adsorb differently on NaSS and gold surfaces. Explored further using peak ratios for buried/surface amino acids for each protein, we found that proteins denature more on NaSS surfaces than on gold surfaces. Also, using peak ratios for asymmetrically distributed amino acids, potential structural differences were postulated for BSA and IgG adsorbed onto NaSS and gold surfaces. PC modeling, used to track changes in plasma adsorption with time, suggests that plasma films on NaSS and Au surfaces become more Fgn-like with increasing adsorption time. However, the PC models included only three proteins, where plasma is composed of hundreds of proteins. Therefore, while both gold and NaSS appear to adsorb more Fgn with time, further study is required to confirm that this is representative of the final state of the plasma films.


Assuntos
Fibrinogênio/química , Ouro/química , Imunoglobulina G/química , Soroalbumina Bovina/química , Ácidos Sulfônicos/química , Adsorção , Animais , Bovinos , Espectroscopia Fotoeletrônica , Análise de Componente Principal , Silício , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
8.
Surf Sci ; 648: 339-344, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26924858

RESUMO

Surface engineering advances of semiconductor quantum dots (QDs) have enabled their application to molecular labeling, disease diagnostics and tumor imaging. For biological applications, hydrophobic core/shell QDs are transferred into aqueous solutions through the incorporation of water-solubility imparting moieties, typically achieved via direct exchange of the native surface passivating ligands or indirectly through the adsorption of polymers. Although polymeric encapsulation has gained wide acceptance, there are few reports addressing the characterization of the adsorbed polymers and existing theoretical analyses are typically based on simple geometric models. In this work, we experimentally characterize and quantify water-soluble QDs prepared by adsorption of amphiphilic poly(maleic anhydride-alt-1-tetradecene) (PMAT, MW~9000) onto commercially available CdSe/CdS/ZnS (CdSe/CdS/ZnS-PMAT). Using x-ray photoelectron spectroscopy (XPS) we determined that ~15 PMAT molecules are adsorbed onto each QD and sum frequency generation (SFG) vibrational spectra was utilized to investigate the mechanism of interaction between PMAT molecules and the QD surface. Importantly, when employed together, these techniques constitute a platform with which to investigate any polymer-nanoparticle complex in general.

9.
Analyst ; 140(17): 6005-14, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26185799

RESUMO

To properly process and reconstruct 3D ToF-SIMS data from systems such as multi-component polymers, drug delivery scaffolds, cells and tissues, it is important to understand the sputtering behavior of the sample. Modern cluster sources enable efficient and stable sputtering of many organics materials. However, not all materials sputter at the same rate and few studies have explored how different sputter rates may distort reconstructed depth profiles of multicomponent materials. In this study spun-cast bilayer polymer films of polystyrene and PMMA are used as model systems to optimize methods for the reconstruction of depth profiles in systems exhibiting different sputter rates between components. Transforming the bilayer depth profile from sputter time to depth using a single sputter rate fails to account for sputter rate variations during the profile. This leads to inaccurate apparent layer thicknesses and interfacial positions, as well as the appearance of continued sputtering into the substrate. Applying measured single component sputter rates to the bilayer films with a step change in sputter rate at the interfaces yields more accurate film thickness and interface positions. The transformation can be further improved by applying a linear sputter rate transition across the interface, thus modeling the sputter rate changes seen in polymer blends. This more closely reflects the expected sputtering behavior. This study highlights the need for both accurate evaluation of component sputter rates and the careful conversion of sputter time to depth, if accurate 3D reconstructions of complex multi-component organic and biological samples are to be achieved. The effects of errors in sputter rate determination are also explored.


Assuntos
Polimetil Metacrilato/química , Poliestirenos/química , Manufaturas , Microscopia de Força Atômica , Silício/química , Propriedades de Superfície
10.
J Mater Sci Mater Med ; 26(7): 206, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26155977

RESUMO

Poly(sodium styrene sulfonate) (pNaSS) was grafted onto poly(ε-caprolatone) (PCL) surfaces via ozonation and graft polymerization. The effect of ozonation and polymerization time, as well as the Mohr's salt concentration in the grafting solution, on the degree of grafting was investigated. The degree of grafting was determined through toluidine blue staining. The surface chemical change was characterized by attenuated total reflection Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The result demonstrated that the grafting did not induce any degradation of PCL, and that pNaSS was grafted onto PCL as a thin and covalently stable layer. Furthermore, the modified PCL surface reveals a significant increase in the metabolic activity of fibroblastic cells, as well as a better cell spreading with higher adhesion strength. Consequently, bioactivity of PCL is greatly enhanced by immobilizing a thin layer of pNaSS onto its surface. The grafting of pNaSS is a promising approach to increase the bioactivity of PCL-based materials used in tissue engineering applications, such as ligament reconstruction.


Assuntos
Poliésteres/química , Polímeros/química , Ácidos Sulfônicos/química , Fibroblastos/citologia , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Engenharia Tecidual
11.
J Vac Sci Technol A ; 33(2): 021407, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25759511

RESUMO

Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

12.
J Vac Sci Technol A ; 33(5): 05E131, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-26396463

RESUMO

A 24 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm-2 for this system) CuBr2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.

13.
Rapid Commun Mass Spectrom ; 28(18): 1971-8, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25132297

RESUMO

RATIONALE: For organic electronics, device performance can be affected by interlayer diffusion across interfaces. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) can resolve buried structures with nanometer resolution, but instrument artifacts make this difficult. Low-temperature plasma (LTP) is suggested as a way to prepare artifact-free surfaces for accurate determination of chemical diffusion. METHODS: A model organic layer system consisting of three 1 nm delta layers of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) separated by three 30 nm layers of tris(8-hydroxyquinolinato)aluminum (Alq3) was used to evaluate the effectiveness of LTP etching for the preparation of crater edge surfaces for subsequent compositional depth profile analysis. This was compared with depth profiles obtained using an instrument equipped with an argon cluster sputter source. RESULTS: The quality of the depth profiles was determined by comparing the depth resolutions of the BCP delta layers. The full width at half maximum gave depth resolutions of 6.9 nm and 6.0 nm using LTP, and 6.2 nm and 5.8 nm using argon clusters. In comparison, the 1/e decay length of the trailing edge gave depth resolutions of 2.0 nm and 1.8 nm using LTP, and 3.5 nm and 3.4 nm using argon clusters. CONCLUSIONS: The comparison of the 1/e decay lengths showed that LTP can determine the thickness and composition of the buried structures without instrument artifacts. Although it does suffer from contaminant deposition, LTP was shown to be a viable option for preparing crater edges for a more accurate determination of buried structures.


Assuntos
Argônio/química , Fulerenos/química , Compostos Organometálicos/química , Alumínio/química , Temperatura Baixa , Espectrometria de Massas , Fenantrolinas/química , Propriedades de Superfície
14.
Anal Chem ; 85(22): 10869-77, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131300

RESUMO

In this study, a non-native chemical species, bromodeoxyuridine (BrdU), was imaged within single HeLa cells using time-of-flight secondary ion mass spectrometry (TOF-SIMS). z-corrected 3D images were reconstructed that accurately portray the distribution of intracellular BrdU as well as other intracellular structures. The BrdU was localized to the nucleus of cells, whereas structures composed of CxHyOz(-) species were located in bundles on the periphery of cells. The CxHyOz(-) subcellular features had a spatial resolution at or slightly below a micrometer (900 nm), as defined by the distance between the 16% and 84% intensities in a line scan across the edge of the features. Additionally, important parameters influencing the quality of the HeLa cell 3D images were investigated. Atomic force microscopy measurements revealed that the HeLa cells were sputtered at a rate of approximately 4 nm per 10(13) C60(+) ions/cm(2) at 10 keV and a 45° incident angle. Optimal 3D images were acquired using a Bi3(+) liquid metal ion gun operating in the simultaneous high mass and spatial resolution mode.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Força Atômica/métodos , Espectrometria de Massa de Íon Secundário/métodos , Antimetabólitos , Bromodesoxiuridina , Células HeLa , Humanos , Frações Subcelulares
15.
Langmuir ; 29(41): 12710-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24024777

RESUMO

The adsorption and structure of sodium dodecyl sulfate (SDS) layers onto positively charged films have been monitored in situ with vibrational sum-frequency-generation (SFG) spectroscopy and surface plasmon resonance (SPR) sensing. Substrates with different charge densities and polarities used in these studies include CaF2 at different pH values as well as allylamine and heptylamine films deposited onto CaF2 and Au substrates by radio frequency glow discharge deposition. The SDS films were adsorbed from aqueous solutions ranging in concentration from 0.067 to 20 mM. In general the SFG spectra exhibited well resolved CH and OH peaks. However, at SDS concentrations between 1 and 8 mM the SFG CH and OH intensities decreased close to background levels. Combined data sets from molecular conformation, orientation, and order sensitive SFG with mass sensitive SPR suggest that the observed changes in SFG intensities above 0.2 mM are related to structural arrangements in the SDS layer. A model is proposed where the SFG intensity minimum between 1 and 8 mM is associated with a monolayer containing two headgroup orientations, one pointing toward the substrate and one pointing toward the solution phase. The SFG peaks observed at concentrations below 0.2 mM are dominated by the presence of adsorbed contaminants such as fatty alcohols (e.g., dodecanol), which are more surface active than SDS. As SDS solution concentration is increased above 1 mM SDS molecules are incorporated in the surface layer, with dodecanol continuing to be present in the surface layer for solution concentrations up to at least the critical micelle concentration.


Assuntos
Dodecilsulfato de Sódio/química , Adsorção , Fluoreto de Cálcio/química , Ouro/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Espectrofotometria Infravermelho , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 15(30): 12516-24, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23727992

RESUMO

The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge X-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface.


Assuntos
Proteínas/química , Marcação por Isótopo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Poliestirenos/química , Estrutura Secundária de Proteína , Proteínas/metabolismo , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
17.
Proc Natl Acad Sci U S A ; 107(30): 13288-93, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20628016

RESUMO

The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an alpha-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKalpha14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Poliestirenos/química , Análise Espectral/métodos , Adsorção , Algoritmos , Sequência de Aminoácidos , Leucina/química , Lisina/química , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/farmacocinética , Estrutura Secundária de Proteína
18.
J Vac Sci Technol A ; 31(6): 6F103, 2013 11.
Artigo em Inglês | MEDLINE | ID: mdl-24482558

RESUMO

This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.

19.
Biointerphases ; 18(3)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306557

RESUMO

Self-assembled monolayers (SAMs) of perfluoroalkanethiols [CF3(CF2)xCH2CH2SH (x = 3, 5, 7, and 9)] on gold were characterized by x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS), and static time-of-flight secondary ion mass spectrometry (ToF-SIMS). Perfluoroalkanethiols of several chain lengths were synthesized using a known hydride reduction method for transforming commercially available perfluoroalkyliodides to corresponding perfluoroalkanethiols. This strategy provides improved product yields compared to other known routes based on hydrolysis from the common thioacetyl perfluoroalkyl intermediate. Angle-dependent XPS analysis revealed that CF3(CF2)xCH2CH2SH (x = 5, 7, and 9; F6, F8, and F10, respectively) SAMs on gold exhibited significant enrichment of the terminal CF3 group at the outer monolayer surface with the sulfur present as a metal-bound thiolate located at the monolayer-gold interface. XPS of the CF3(CF2)3CH2CH2SH (F4) monolayer revealed a thin film with a significant (>50%) amount of hydrocarbon contamination consistent with poorly organized monolayers, while the longest thiol (F10) showed XPS signals attributed to substantial ordering and anisotropy. ToF-SIMS spectra from all four SAMs contained molecular ions representative of the particular perfluorinated thiol used to prepare the monolayer. NEXAFS methods were used to determine degrees of ordering and average tilt for molecules comprising monolayers. The SAMs prepared from the longest (F10) thiols exhibited the highest degree of ordering with the molecular axis nearly perpendicular to the gold surface. The degree of ordering decreased significantly with decreasing length of the perfluorocarbon tail.


Assuntos
Fluorocarbonos , Ouro , Hidrólise , Espectroscopia Fotoeletrônica , Compostos de Sulfidrila
20.
J Am Chem Soc ; 134(21): 8750-3, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22563672

RESUMO

Extracellular biomineralization proteins such as salivary statherin control the growth of hydroxyapatite (HAP), the principal component of teeth and bones. Despite the important role that statherin plays in the regulation of hard tissue formation in humans, the surface recognition mechanisms involved are poorly understood. The protein-surface interaction likely involves very specific contacts between the surface atoms and the key protein side chains. This study demonstrates for the first time the power of combining near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with element labeling to quantify the orientation of individual side chains. In this work, the 15 amino acid N-terminal binding domain of statherin has been adsorbed onto HAP surfaces, and the orientations of phenylalanine rings F7 and F14 have been determined using NEXAFS analysis and fluorine labels at individual phenylalanine sites. The NEXAFS-derived phenylalanine tilt angles have been verified with sum frequency generation spectroscopy.


Assuntos
Durapatita/metabolismo , Fenilalanina , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Espectroscopia por Absorção de Raios X , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa