Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38989580

RESUMO

BACKGROUND: Aortic stenosis (AS) is driven by progressive inflammatory and fibrocalcific processes regulated by circulating inflammatory and valve resident endothelial and interstitial cells. The impact of platelets, platelet-derived mediators, and platelet-monocyte interactions on the acceleration of local valvular inflammation and mineralization is presently unknown. METHODS: We prospectively enrolled 475 consecutive patients with severe symptomatic AS undergoing aortic valve replacement. Clinical workup included repetitive echocardiography, analysis of platelets, monocytes, chemokine profiling, aortic valve tissue samples for immunohistochemistry, and gene expression analysis. RESULTS: The patients were classified as fast-progressive AS by the median ∆Vmax of 0.45 m/s per year determined by echocardiography. Immunohistological aortic valve analysis revealed enhanced cellularity in fast-progressive AS (slow- versus fast-progressive AS; median [interquartile range], 247 [142.3-504] versus 717.5 [360.5-1234]; P<0.001) with less calcification (calcification area, mm2: 33.74 [27.82-41.86] versus 20.54 [13.52-33.41]; P<0.001). MIF (macrophage migration inhibitory factor)-associated gene expression was significantly enhanced in fast-progressive AS accompanied by significantly elevated MIF plasma levels (mean±SEM; 6877±379.1 versus 9959±749.1; P<0.001), increased platelet activation, and decreased intracellular MIF expression indicating enhanced MIF release upon platelet activation (CD62P, %: median [interquartile range], 16.8 [11.58-23.8] versus 20.55 [12.48-32.28], P=0.005; MIF, %: 4.85 [1.48-9.75] versus 2.3 [0.78-5.9], P<0.001). Regression analysis confirmed that MIF-associated biomarkers are strongly associated with an accelerated course of AS. CONCLUSIONS: Our findings suggest a key role for platelet-derived MIF and its interplay with circulating and valve resident monocytes/macrophages in local and systemic thromboinflammation during accelerated AS. MIF-based biomarkers predict an accelerated course of AS and represent a novel pharmacological target to attenuate progression of AS.

2.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Proteínas de Membrana Lisossomal , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
3.
Biomarkers ; 28(1): 97-110, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36377411

RESUMO

INTRODUCTION: Patients with cardiovascular disease (CVD) and acute SARS-CoV-2 infection might show an altered immune response during COVID-19. MATERIAL AND METHODS: Twenty-three patients with CVD and SARS-CoV-2 infection were prospectively enrolled and received a cardiological assessment at study entry and during follow-up visit. Inclusion criteria of our study were age older than 18 years, presence of CVD, and acute SARS-CoV-2 infection. The median age of the patient cohort was 69 (IQR 55-79) years. 12 (52.2%) patients were men. Peripheral monocytes and chemokine/cytokine profiles were analysed. RESULTS: Numbers of classical and non-classical monocytes were significantly decreased during acute SARS-CoV-2 infection compared to 3-month recovery. While classical monocytes reached the expected level in peripheral blood after 3 months, the number of non-classical monocytes remained significantly reduced. DISCUSSION: All three monocyte subsets exhibited changes of established adhesion and activation markers. Interestingly, they also expressed higher levels of pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF) at the time of recovery, although MIF was only slightly increased during the acute phase. CONCLUSION: Changes of monocyte phenotypes and increased MIF expression after 3-month recovery from acute SARS-CoV-2 infection may indicate persistent, possibly long-lasting, pro-inflammatory monocyte function in CVD patients.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Monócitos , Citocinas , Quimiocinas
5.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681838

RESUMO

Platelets play a significant role in atherothrombosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of LDL metabolism and interacts with platelet function. The effect of PCSK9 in platelet function is poorly understood. The authors of this article sought to characterize platelets as a major source of PCSK9 and PCSK9's role in atherothrombosis. In a large cohort of patients with coronary artery disease (CAD), platelet count, platelet reactivity, and platelet-derived PCSK9 release were analyzed. The role of platelet PCSK9 on platelet and monocyte function was investigated in vitro. Platelet count and hyper-reactivity correlated with plasma LDL in CAD. The circulating platelets express on their surface and release substantial amounts of PCSK9. Release of PCSK9 augmented platelet-dependent thrombosis, monocyte migration, and differentiation into macrophages/foam cells. Platelets and PCSK9 accumulated in tissue derived from atherosclerotic carotid arteries in areas of macrophages. PCSK9 inhibition reduced platelet activation and platelet-dependent thrombo-inflammation. The authors identified platelets as a source of PCSK9 in CAD, which may have an impact on LDL metabolism. Furthermore, platelet-derived PCSK9 contributes to atherothrombosis, and inhibition of PCSK9 attenuates thrombo-inflammation, which may contribute to the reported beneficial clinical effects.


Assuntos
Aterosclerose/metabolismo , Plaquetas/fisiologia , Doença da Artéria Coronariana/metabolismo , Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9/fisiologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas/estatística & dados numéricos , Trombose/metabolismo
6.
Nanomedicine ; 29: 102274, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712174

RESUMO

Thrombus formation at athero-thrombotic sites is initiated by the exposure of collagen followed by platelet adhesion mediated by the platelet-specific collagen receptor glycoprotein VI (GPVI). Here, dimeric GPVI was used as a targeting motif to functionalize polymeric nanoparticle-based drug carriers and to show that with proper design, such GPVI-coated nanoparticles (GPNs) can efficiently and specifically target arterial injury sites while withstanding physiological flow. In a microfluidic model, under physiological shear levels (1-40 dyne/cm2), 200 nm and 2 µm GPNs exhibited a >60 and >10-fold increase in binding to collagen compared to control particles, respectively. In vitro experiments in an arterial stenosis injury model, subjected to physiological pulsatile flow, showed shear-enhanced adhesion of 200 nm GPNs at the stenosis region which was confirmed in vivo in a mice ligation carotid injury model using intravital microscopy. Altogether, our results illustrate how engineering tools can be harnessed to design nano-carriers that efficiently target cardiovascular disease sites.


Assuntos
Aterosclerose/tratamento farmacológico , Lesões das Artérias Carótidas/tratamento farmacológico , Nanopartículas/química , Glicoproteínas da Membrana de Plaquetas/farmacologia , Animais , Aterosclerose/patologia , Plaquetas/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/química
7.
J Mol Cell Cardiol ; 97: 36-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27106803

RESUMO

AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Dependovirus/genética , Expressão Gênica , Vetores Genéticos/genética , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais , Transdução Genética
8.
Biochem Biophys Res Commun ; 476(4): 267-272, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27230958

RESUMO

Angiotensin-II is a key factor in renal fibrosis. Obstructive nephropathy induces an isoform shift from catalytic Ampkα2 towards Ampkα1 which contributes to signaling involved in renal tissue injury. The present study explored whether the Ampkα1 isoform contributes to the renal effects of angiotensin-II. To this end, angiotensin-II was infused by subcutaneous implantation of osmotic minipumps in gene-targeted mice lacking functional Ampkα1 (Ampkα1(-/-)) and corresponding wild-type mice (Ampkα1(+/+)). Western blotting and qRT-PCR were employed to determine protein abundance and mRNA levels, respectively, in renal tissue. In Ampkα1(+/+) mice, angiotensin-II increased renal Ampkα1 protein expression without significantly modifying renal Ampkα2 protein expression. The renal phosphorylated Ampkα (Thr(172)) protein abundance was not affected by angiotensin-II in neither genotypes, but was significantly lower in Ampkα1(-/-) mice than Ampkα1(+/+) mice. Angiotensin-II increased the phosphorylation of Tak1 (Ser(412)) in renal tissue of Ampkα1(+/+) mice, an effect virtually absent in the Ampkα1(-/-) mice. Furthermore, angiotensin-II treatment significantly increased renal protein and mRNA expression of α-smooth muscle actin (αSma) as well as Tak1-target gene expression: Cox2, Il6 and Pai1 in Ampkα1(+/+) mice, all effects significantly less pronounced in Ampkα1(-/-) mice. In conclusion, angiotensin-II up-regulates the Ampkα1 isoform in renal tissue. Ampkα1 participates in renal Tak1 activation and Tak1-dependent signaling induced by angiotensin-II.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Angiotensina II/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo , MAP Quinase Quinase Quinases/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas/genética , Animais , Ciclo-Oxigenase 2/genética , Ativação Enzimática , Deleção de Genes , Interleucina-6/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , RNA Mensageiro/genética
9.
Cell Physiol Biochem ; 37(2): 603-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26344141

RESUMO

BACKGROUND/AIMS: The serum- and glucocorticoid-inducible kinase SGK1 participates in the orchestration of cardiac hypertrophy and remodeling. Signaling linking SGK1 activity to cardiac remodeling is, however, incompletely understood. SGK1 phosphorylation targets include cyclin-dependent kinase inhibitor 1B (p27), a protein which suppresses cardiac hypertrophy. The present study explored how effects of SGK1 on nuclear p27 localization might modulate the hypertrophic response in cardiomyocytes. METHODS: Experiments were performed in HL-1 cardiomyocytes and in SGK1-deficient (sgk1-/-) and corresponding wild-type (sgk1+/+) mice following pressure overload by transverse aortic constriction (TAC). Transcript levels were quantified by RT-PCR, protein abundance by Western blotting and protein localization by confocal microscopy. RESULTS: In HL-1 cardiomyocytes, overexpression of constitutively active SGK1 (SGK1S422D) but not of inactive SGK1 (SGK1K127N) increased significantly the cell size and transcript levels encoding Acta1, a molecular marker of hypertrophy. Those effects were paralleled by almost complete relocation of p27 in the cytoplasm. Treatment of HL-1 cardiomyocytes with isoproterenol was followed by up-regulation of SGK1 expression. Moreover, isoproterenol treatment stimulated the hypertrophic response and was followed by disappearance of p27 from the nuclei, effects prevented by the SGK1 inhibitor EMD638683. The effect of SGK1S422D overexpression on Acta1 mRNA levels was disrupted by overexpression of p27 and of the p27T197A mutant lacking the SGK1 phosphorylation site, but not of the phosphomimetic p27T197D mutant. In sgk1+/+ mice, TAC increased significantly SGK1 and Acta1 mRNA levels and decreased the nuclear to cytoplasmic protein ratio of p27 in cardiac tissue, effects blunted in the sgk1-/- mice. CONCLUSION: SGK1-induced hypertrophy of cardiomyocytes involves p27 phosphorylation at T197, which fosters cytoplasmic p27 localization.


Assuntos
Cardiomegalia/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
10.
Cell Physiol Biochem ; 37(3): 955-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394244

RESUMO

BACKGROUND/AIMS: Consequences of obstructive nephropathy include tissue fibrosis, a major pathophysiological mechanism contributing to development of end-stage renal disease. Transforming growth factor ß 1 (Tgfß1) is involved in the progression of renal fibrosis. According to recent observations, ammonium chloride (NH4Cl) prevented phosphate-induced vascular remodeling, effects involving decrease of Tgfß1 expression and inhibition of Tgfß1-dependent signaling. The present study, thus, explored whether NH4Cl influences renal Tgfß1-induced pro-fibrotic signaling in obstructive nephropathy induced by unilateral ureteral obstruction (UUO). METHODS: UUO was induced for seven days in C57Bl6 mice with or without additional treatment with NH4Cl (0.28 M in drinking water). Transcript levels were determined by RT-PCR as well as protein abundance by Western blotting, blood pH was determined utilizing a blood gas and chemistry analyser. RESULTS: UUO increased renal mRNA expression of Tgfb1, Tgfß-activated kinase 1 (Tak1) protein abundance and Smad2 phosphorylation in the nuclear fraction of the obstructed kidney tissues, effects blunted in NH4Cl treated mice as compared to control treated mice. The mRNA levels of the transcription factors nuclear factor of activated T cells 5 (Nfat5) and SRY (sex determining region Y)-box 9 (Sox9) as well as of tumor necrosis factor α (Tnfα), interleukin 6 (Il6), plasminogen activator inhibitor 1 (Pai1) and Snai1 were up-regulated in the obstructed kidney tissues following UUO, effects again significantly ameliorated following NH4Cl treatment. Furthermore, the increased protein and mRNA expression of α-smooth muscle actin (α-Sma), fibronectin and collagen type I in the obstructed kidney tissues following UUO were significantly attenuated following NH4Cl treatment. CONCLUSION: NH4Cl treatment ameliorates Tgfß1-dependent pro-fibrotic signaling and renal tissue fibrosis markers following obstructive nephropathy.


Assuntos
Cloreto de Amônio/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Obstrução Ureteral/metabolismo , Cloreto de Amônio/farmacologia , Animais , Biomarcadores/sangue , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/sangue , Obstrução Ureteral/genética
11.
Neurosignals ; 23(1): 1-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656295

RESUMO

BACKGROUND: Chorein, a protein supporting activation of phosphoinositide 3 kinase (PI3K), participates in the regulation of actin polymerization and cell survival. A loss of function mutation of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) leads to chorea-acanthocytosis (ChAc), a neurodegenerative disorder with simultaneous erythrocyte akanthocytosis. In blood platelets chorein deficiency has been shown to compromise expression of vesicle-associated membrane protein 8 (VAMP8) and thus degranulation. The present study explored whether chorein is similarly involved in VAMP8 expression and dopamine release of pheochromocytoma (PC12) cells. METHODS: Chorein was down-regulated by silencing in PC12 cells. Transmission electron microscopy was employed to quantify the number of vesicles, RT-PCR to determine transcript levels, Western blotting to quantify protein expression and ELISA to determine dopamine release. RESULTS: Chorein silencing significantly reduced the number of vesicles, VAMP8 transcript levels and VAMP8 protein abundance. Increase of extracellular K+ from 5 mM to 40 mM resulted in marked stimulation of dopamine release, an effect significantly blunted by chorein silencing. CONCLUSIONS: Chorein deficiency down-regulates VAMP8 expression, vesicle numbers and dopamine release in pheochromocytoma cells.


Assuntos
Dopamina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Microscopia Eletrônica de Transmissão , Células PC12/efeitos dos fármacos , Células PC12/ultraestrutura , Cloreto de Potássio/farmacologia , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/ultraestrutura , Ratos , Transfecção , Proteínas de Transporte Vesicular/genética
12.
Kidney Blood Press Res ; 40(5): 490-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418500

RESUMO

BACKGROUND/AIMS: Excessive phosphate concentrations trigger vascular calcification, an active process promoted by osteoinduction of vascular smooth muscle cells (VSMCs) with increased expression and activity of transcription factor RUNX2 (Core-binding factor α1, CBFA1), alkaline phosphatase (ALPL), TGFß1, transcription factor NFAT5, and NFAT5-sensitive transcription factor SOX9. The osteoinductive signaling and vascular calcification of hyperphosphatemic klotho-hypomorphic mice could be reversed by treatment with NH4Cl, effects involving decrease of TGFß1 and inhibition of NFAT5-dependent osteoinductive signaling. Known effects of NH4Cl include alkalinization of acidic cellular compartments. The present study explored whether osteo-/chondrogenic signaling could be influenced by alkalinization of acidic cellular compartments following inhibition of the vacuolar H+ ATPase with bafilomycin A1 or following dissipation of the pH gradient across the membranes of acidic cellular compartments with methylamine. METHODS: Primary human aortic smooth muscle cells (HAoSMCs) were treated with high phosphate to trigger osteo-/chondrogenic signaling and calcification in the absence or presence of bafilomycin A1 or methylamine. Calcium content was determined using a QuantiChrom Calcium assay, ALP activity by a colorimetric assay and transcript levels by quantitative RT-PCR. RESULTS: High phosphate increased significantly the calcium deposition, CBFA1 and ALPL mRNA expression as well as alkaline phosphatase activity in HAoSMCs, all effects ameliorated by both, bafilomycin A1 and methylamine. High phosphate further significantly up-regulated the mRNA levels of TGFB1, NFAT5 and SOX9, effects significantly blunted by additional treatment with bafilomycin A1 or methylamine. Treatment of HAoSMCs with human TGFß1 protein or high phosphate up-regulated NFAT5, SOX9, CBFA1 and ALPL mRNA expression to similarly high levels which could not be further increased by combined treatment with high phosphate and TGFß1. Bafilomycin A1 failed to reverse the osteo-/chondrogenic signaling triggered by high phosphate together with TGFß1. CONCLUSIONS: Inhibition of the vacuolar H+ ATPase or dissipation of the pH gradient across the membranes of acidic cellular compartments both disrupt osteo-/chondrogenic signaling and calcium deposition in VSMCs, observations supporting the hypothesis that vascular calcification requires acidic cellular compartments.


Assuntos
Condrogênese/fisiologia , Macrolídeos/metabolismo , Metilaminas/metabolismo , Músculo Liso Vascular/metabolismo , Osteogênese/fisiologia , Fosfatos/toxicidade , Calcificação Vascular/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Células Cultivadas , Condrogênese/efeitos dos fármacos , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/prevenção & controle
13.
Sci Rep ; 14(1): 6089, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480746

RESUMO

Coronary artery disease (CAD) often leads to adverse events resulting in significant disease burdens. Underlying risk factors often remain inapparent prior to disease incidence and the cardiovascular (CV) risk is not exclusively explained by traditional risk factors. Platelets inherently promote atheroprogression and enhanced platelet functions and distinct platelet lipid species are associated with disease severity in patients with CAD. Lipidomics data were acquired using mass spectrometry and processed alongside clinical data applying machine learning to model estimates of an increased CV risk in a consecutive CAD cohort (n = 595). By training machine learning models on CV risk measurements, stratification of CAD patients resulted in a phenotyping of risk groups. We found that distinct platelet lipids are associated with an increased CV or bleeding risk and independently predict adverse events. Notably, the addition of platelet lipids to conventional risk factors resulted in an increased diagnostic accuracy of patients with adverse CV events. Thus, patients with aberrant platelet lipid signatures and platelet functions are at elevated risk to develop adverse CV events. Machine learning combining platelet lipidome data and common clinical parameters demonstrated an increased diagnostic value in patients with CAD and might improve early risk discrimination and classification for CV events.


Assuntos
Carnitina/análogos & derivados , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Hemorragia , Fatores de Risco , Aprendizado de Máquina , Lisofosfolipídeos , Lipídeos
14.
Thromb Res ; 234: 63-74, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171216

RESUMO

BACKGROUND AND AIMS: Hemolysis is a known risk factor for thrombosis resulting in critical limb ischemia and microcirculatory disturbance and organ failure. Intravasal hemolysis may lead to life-threatening complications due to uncontrolled thrombo-inflammation. Until now, conventional antithrombotic therapies failed to control development and progression of these thrombotic events. Thus, the pathophysiology of these thrombotic events needs to be investigated to unravel underlying pathways and thereby identify targets for novel treatment strategies. METHODS: Here we used classical experimental set-ups as well as high-end flow cytometry, metabolomics and lipidomic analysis to in-depth analyze the effects of hemin on platelet physiology and morphology. RESULTS: Hemin does strongly and swiftly induce platelet activation and this process is modulated by the sGC-cGMP-cGKI signaling axis. cGMP modulation also reduced the pro-aggregatory potential of plasma derived from patients with hemolysis. Furthermore, hemin-induced platelet death evokes distinct platelet subpopulations. Typical cell death markers, such as ROS, were induced by hemin-stimulation and the platelet lipidome was specifically altered by high hemin concentration. Specifically, arachidonic acid derivates, such as PGE2, TXB2 or 12-HHT, were significantly increased. Balancing the cGMP levels by modulation of the sGC-cGMP-cGKI axis diminished the ferroptotic effect of hemin. CONCLUSION: We found that cGMP modulates hemin-induced platelet activation and thrombus formation in vitro and cGMP effects hemin-mediated platelet death and changes in the platelet lipidome. Thus, it is tempting to speculate that modulating platelet cGMP levels may be a novel strategy to control thrombosis and critical limb ischemia in patients with hemolytic crisis.


Assuntos
Hemina , Trombose , Humanos , Hemina/farmacologia , Hemina/metabolismo , Isquemia Crônica Crítica de Membro , Hemólise , Microcirculação , Plaquetas/metabolismo , Trombose/metabolismo
15.
Clin Res Cardiol ; 112(11): 1664-1678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470807

RESUMO

BACKGROUND AND AIMS: Patients with cardiovascular disease (CVD) are at high risk to develop adverse events. The distinct risk of developing adverse cardiovascular (CV) events is not solely explained by traditional risk factors. Platelets are essentially involved in progression of CVD including coronary artery disease (CAD) and platelet hyperreactivity leads to development of adverse CV events. Alterations in the platelet lipidome lead to platelet hyperresponsiveness and thus might alter the individual risk profile. In this study, we investigate the platelet lipidome of CAD patients by untargeted lipidomics and elucidate alterations in the lipid composition of patients with adverse CV events. METHODS: We characterized the platelet lipidome in a large consecutive CAD cohort (n = 1057) by an untargeted lipidomics approach using liquid chromatography coupled to mass spectrometry. RESULTS: The platelet lipidome in this study identified 767 lipids and characteristic changes occurred in patients with adverse CV events. The most prominent upregulated lipids in patients with cardiovascular events primarily belong to the class of phospholipids and fatty acyls. Further, upregulated platelet lipids are associated with an increased cardiovascular or bleeding risk and independently associated with adverse events. In addition, alterations of the platelet lipidome are associated with modulation of in vitro platelet functions. CONCLUSIONS: Our results reveal that the composition of the platelet lipidome is altered in CVD patients with an increased cardiovascular risk and distinct platelet lipids may indicate adverse events. Results of this study may contribute to improved risk discrimination and classification for cardiovascular events in patients with CVD. Main findings of this study and hypothetical impact of altered platelet lipid signatures in patients with adverse cardiovascular events on platelet function and clinical outcome. LPE lysophosphatidylethanolamines, CAR acylcarnitines, FA fatty acids.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Fatores de Risco , Lipidômica , Doença da Artéria Coronariana/diagnóstico , Fatores de Risco de Doenças Cardíacas , Lipídeos
16.
Thromb Haemost ; 123(7): 679-691, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037200

RESUMO

INTRODUCTION: Hemolysis results in release of free hemoglobin and hemin liberation from erythrocytes. Hemin has been described to induce platelet activation and to trigger thrombosis. METHODS: We evaluated the effect of hemin on platelet function and surface expression of the platelet collagen receptor glycoprotein VI (GPVI). Isolated platelets were stimulated with increasing concentrations of hemin. RESULTS: We found that hemin strongly enhanced platelet activation, aggregation, and aggregate formation on immobilized collagen under flow. In contrast, we found that surface expression of GPVI was significantly reduced upon hemin stimulation with high hemin concentrations indicating that hemin-induced loss of surface GPVI does not hinder platelet aggregation. Loss of hemin-induced surface expression of GPVI was caused by shedding of the ectodomain of GPVI as verified by immunoblotting and is independent of the GPVI or CLEC-2 mediated ITAM (immunoreceptor-tyrosine-based-activation-motif) signaling pathway as inhibitor studies revealed. Hemin-induced GPVI shedding was independent of metalloproteinases such as ADAM10 or ADAM17, which were previously described to regulate GPVI degradation. Similarly, concentration-dependent shedding of CD62P was also induced by hemin. Unexpectedly, we found that the subtilisin-like proprotein convertase furin controls hemin-dependent GPVI shedding as shown by inhibitor studies using the specific furin inhibitors SSM3 and Hexa-D-arginine. In the presence of SSM3 and Hexa-D-arginine, hemin-associated GPVI degradation was substantially reduced. Further, SSM3 inhibited hemin-induced but not CRP-XL-induced platelet aggregation and thrombus formation, indicating that furin controls specifically hemin-associated platelet functions. CONCLUSION: In summary, we describe a novel mechanism of hemin-dependent GPVI shedding and platelet function mediated by furin.


Assuntos
Furina , Hemina , Humanos , Hemina/farmacologia , Hemina/metabolismo , Furina/metabolismo , Furina/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Ativação Plaquetária
17.
Thromb Haemost ; 123(6): 585-596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36898406

RESUMO

BACKGROUND: Platelets are key players in the pathophysiology of coronary artery disease (CAD) and platelet hyperreactivity leads to increased risk of developing adverse cardiovascular events. Further, significant changes in the platelet lipidome occur in patients with acute coronary syndrome (ACS) and critically regulated lipids lead to platelet hyperresponsiveness. Statin treatment is crucial in the treatment and prevention of patients with CAD by remodeling lipid metabolism. OBJECTIVE: In this study, we investigate the platelet lipidome of CAD patients by untargeted lipidomics, highlighting significant changes between statin-treated and naïve patients. METHODS: We characterized the platelet lipidome in a CAD cohort (n = 105) by an untargeted lipidomics approach using liquid chromatography coupled to mass spectrometry. RESULTS: Among the annotated lipids, 41 lipids were significantly upregulated in statin-treated patients, whereas 6 lipids were downregulated compared to naïve patients. The most prominent upregulated lipids in statin-treated patients belong to the class of triglycerides, cholesteryl esters, palmitic acid, and oxidized phospholipids, whereas mainly glycerophospholipids were downregulated compared to untreated patients. A more pronounced effect of statin treatment on the platelet lipidome was observed in ACS patients. We further highlight a dose-dependent influence on the platelet lipidome. CONCLUSION: Our results reveal that the platelet lipidome is altered in CAD patients with statin treatment and upregulated lipids embody mainly characteristic triglycerides, whereas downregulated lipids mostly compromise glycerophospholipids, which may play a role in the pathophysiology of CAD. Results of this study may contribute to the understanding of statin treatment softening the lipid phenotype.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Plaquetas/metabolismo , Lipidômica , Doença da Artéria Coronariana/metabolismo , Triglicerídeos/metabolismo , Síndrome Coronariana Aguda/metabolismo , Glicerofosfolipídeos/metabolismo
18.
Cardiovasc Res ; 118(8): 1904-1916, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323932

RESUMO

AIMS: Platelets play a key role in the pathophysiology of coronary artery disease (CAD) and patients with enhanced platelet activation are at increased risk to develop adverse cardiovascular events. Beyond reliable cardiovascular risk factors such as dyslipoproteinaemia, significant changes of platelet lipids occur in patients with CAD. In this study, we investigate the platelet lipidome by untargeted liquid chromatography-mass spectrometry, highlighting significant changes between acute coronary syndrome (ACS) and chronic coronary syndrome (CCS) patients. Additionally, we classify the platelet lipidome, spotlighting specific glycerophospholipids as key players in ACS patients. Furthermore, we examine the impact of significantly altered lipids in ACS on platelet-dependent thrombus formation and aggregation. METHODS AND RESULTS: In this consecutive study, we characterized the platelet lipidome in a CAD cohort (n = 139) and showed significant changes of lipids between patients with ACS and CCS. We found that among 928 lipids, 7 platelet glycerophospholipids were significantly up-regulated in ACS, whereas 25 lipids were down-regulated compared to CCS. The most prominent up-regulated lipid in ACS, PC18:0 (PC 10:0-8:0), promoted platelet activation and ex vivo platelet-dependent thrombus formation. CONCLUSIONS: Our results reveal that the platelet lipidome is altered in ACS and up-regulated lipids embody primarily glycerophospholipids. Alterations of the platelet lipidome, especially of medium chain lipids, may play a role in the pathophysiology of ACS.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Trombose , Plaquetas , Glicerofosfolipídeos , Humanos , Lipidômica , Lipídeos
19.
JACC Cardiovasc Imaging ; 15(3): 445-456, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34656480

RESUMO

OBJECTIVES: The purpose of this study was to investigate the diagnostic value of simultaneous hybrid cardiac magnetic resonance (CMR) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection and differentiation of active (aCS) from chronic (cCS) cardiac sarcoidosis. BACKGROUND: Late gadolinium enhancement (LGE) CMR and FDG-PET are both established imaging techniques for the detection of CS. However, there are limited data regarding the value of a comprehensive simultaneous hybrid CMR/FDG-PET imaging approach that includes CMR mapping techniques. METHODS: Forty-three patients with biopsy-proven extracardiac sarcoidosis (median age: 48 years, interquartile range: 37-57 years, 65% male) were prospectively enrolled for evaluation of suspected CS. After dietary preparation for suppression of myocardial glucose metabolism, patients were evaluated on a 3-T hybrid PET/MR scanner. The CMR protocol included T1 and T2 mapping, myocardial function, and LGE imaging. We assumed aCS if PET and CMR (ie, LGE or T1/T2 mapping) were both positive (PET+/CMR+), cCS if PET was negative but CMR was positive (PET-/CMR+), and no CS if patients were CMR negative regardless of PET findings. RESULTS: Among the 43 patients, myocardial glucose uptake was suppressed successfully in 36 (84%). Hybrid CMR/FDG-PET revealed aCS in 13 patients (36%), cCS in 5 (14%), and no CS in 18 (50%). LGE was present in 14 patients (39%); T1 mapping was abnormal in 10 (27%) and T2 mapping abnormal in 2 (6%). CS was diagnosed based on abnormal T1 mapping in 4 out of 18 CS patients (22%) who were LGE negative. PET FDG uptake was present in 17 (47%) patients. CONCLUSIONS: Comprehensive simultaneous hybrid CMR/FDG-PET imaging is useful for the detection of CS and provides additional value for identifying active disease. Our results may have implications for enhanced diagnosis as well as improved identification of patients with aCS in whom anti-inflammatory therapy may be most beneficial.


Assuntos
Cardiomiopatias , Miocardite , Sarcoidose , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Meios de Contraste , Feminino , Fluordesoxiglucose F18 , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos , Sarcoidose/diagnóstico por imagem , Sarcoidose/patologia , Tomografia Computadorizada por Raios X
20.
Nat Commun ; 13(1): 1823, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383158

RESUMO

Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.


Assuntos
Traumatismo por Reperfusão , Trombose , Animais , Plaquetas/metabolismo , Humanos , Camundongos , Ativação Plaquetária , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa