Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224738

RESUMO

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


Assuntos
RNA , Tetra-Hidrofolato Desidrogenase , Humanos , Linhagem Celular , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
2.
Hum Mol Genet ; 32(17): 2681-2692, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37364051

RESUMO

Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.


Assuntos
Anormalidades Múltiplas , Fenda Labial , Fissura Palatina , Defeitos do Tubo Neural , Disrafismo Espinal , Animais , Humanos , Camundongos , Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Encefalocele/genética , Mutação , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética
3.
FASEB J ; 38(11): e23738, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38855924

RESUMO

Maternal nutrition contributes to gene-environment interactions that influence susceptibility to common congenital anomalies such as neural tube defects (NTDs). Supplemental myo-inositol (MI) can prevent NTDs in some mouse models and shows potential for prevention of human NTDs. We investigated effects of maternal MI intake on embryonic MI status and metabolism in curly tail mice, which are genetically predisposed to NTDs that are inositol-responsive but folic acid resistant. Dietary MI deficiency caused diminished MI in maternal plasma and embryos, showing that de novo synthesis is insufficient to maintain MI levels in either adult or embryonic mice. Under normal maternal dietary conditions, curly tail embryos that developed cranial NTDs had significantly lower MI content than unaffected embryos, revealing an association between diminished MI status and failure of cranial neurulation. Expression of inositol-3-phosphate synthase 1, required for inositol biosynthesis, was less abundant in the cranial neural tube than at other axial levels. Supplemental MI or d-chiro-inositol (DCI) have previously been found to prevent NTDs in curly tail embryos. Here, we investigated the metabolic effects of MI and DCI treatments by mass spectrometry-based metabolome analysis. Among inositol-responsive metabolites, we noted a disproportionate effect on nucleotides, especially purines. We also found altered proportions of 5-methyltetrahydrolate and tetrahydrofolate in MI-treated embryos suggesting altered folate metabolism. Treatment with nucleotides or the one-carbon donor formate has also been found to prevent NTDs in curly tail embryos. Together, these findings suggest that the protective effect of inositol may be mediated through the enhanced supply of nucleotides during neural tube closure.


Assuntos
Inositol , Defeitos do Tubo Neural , Inositol/metabolismo , Inositol/farmacologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Animais , Feminino , Camundongos , Gravidez , Embrião de Mamíferos/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Metaboloma , Ácido Fólico/metabolismo
4.
Mol Genet Metab ; 142(3): 108496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761651

RESUMO

Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one­carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one­carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.


Assuntos
Encéfalo , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Glicina Desidrogenase (Descarboxilante) , Glicina , Hiperglicinemia não Cetótica , Fígado , Animais , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/metabolismo , Hiperglicinemia não Cetótica/terapia , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Dependovirus/genética , Camundongos , Humanos , Vetores Genéticos/genética , Glicina/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo , Ácido Fólico/metabolismo
5.
Neurobiol Dis ; 170: 105754, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577065

RESUMO

Mitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity. Here we devised and validated a proximity ligation assay for NOX2 activity and demonstrated that in human PD and two animal models thereof, both neuronal and microglial NOX2 are highly active in substantia nigra under chronic conditions. However, in acute and sub-acute PD models, we observed neuronal, but not microglial NOX2 activation, suggesting that neuronal NOX2 may play a primary role in the early stages of the disease. Aberrant NOX2 activity is responsible for the formation of oxidative stress-related post-translational modifications of α-synuclein, and impaired mitochondrial protein import in vitro in primary ventral midbrain neuronal cultures and in vivo in nigrostriatal neurons in rats. In a rat model, administration of a brain-penetrant, highly specific NOX2 inhibitor prevented NOX2 activation in nigrostriatal neurons and its downstream effects in vivo, such as activation of leucine-rich repeat kinase 2 (LRRK2). We conclude that NOX2 is an important enzyme that contributes to progressive oxidative damage which in turn can lead to α-synuclein accumulation, mitochondrial protein import impairment, and LRRK2 activation. In this context, NOX2 inhibitors hold potential as a disease-modifying therapy in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Neurônios Dopaminérgicos/metabolismo , Proteínas Mitocondriais/metabolismo , NADPH Oxidase 2/metabolismo , Doença de Parkinson/metabolismo , Ratos , alfa-Sinucleína/metabolismo
6.
Ann Surg ; 276(5): 776-783, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866643

RESUMO

OBJECTIVE: To develop and validate a risk prediction model of 90-day mortality (90DM) using machine learning in a large multicenter cohort of patients undergoing gastric cancer resection with curative intent. BACKGROUND: The 90DM rate after gastrectomy for cancer is a quality of care indicator in surgical oncology. There is a lack of well-validated instruments for personalized prognosis of gastric cancer. METHODS: Consecutive patients with gastric adenocarcinoma who underwent potentially curative gastrectomy between 2014 and 2021 registered in the Spanish EURECCA Esophagogastric Cancer Registry database were included. The 90DM for all causes was the study outcome. Preoperative clinical characteristics were tested in four 90DM predictive models: Cross Validated Elastic regularized logistic regression method (cv-Enet), boosting linear regression (glmboost), random forest, and an ensemble model. Performance was evaluated using the area under the curve by 10-fold cross-validation. RESULTS: A total of 3182 and 260 patients from 39 institutions in 6 regions were included in the development and validation cohorts, respectively. The 90DM rate was 5.6% and 6.2%, respectively. The random forest model showed the best discrimination capacity with a validated area under the curve of 0.844 [95% confidence interval (CI): 0.841-0.848] as compared with cv-Enet (0.796, 95% CI: 0.784-0.808), glmboost (0.797, 95% CI: 0.785-0.809), and ensemble model (0.847, 95% CI: 0.836-0.858) in the development cohort. Similar discriminative capacity was observed in the validation cohort. CONCLUSIONS: A robust clinical model for predicting the risk of 90DM after surgery of gastric cancer was developed. Its use may aid patients and surgeons in making informed decisions.


Assuntos
Neoplasias Esofágicas , Neoplasias Gástricas , Neoplasias Esofágicas/cirurgia , Gastrectomia/métodos , Humanos , Aprendizado de Máquina , Sistema de Registros , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia
7.
Ann Surg ; 275(2): e392-e400, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32404661

RESUMO

OBJECTIVE: To identify the most prevalent symptoms and those with greatest impact upon health-related quality of life (HRQOL) among esophageal cancer survivors. BACKGROUND: Long-term symptom burden after esophagectomy, and associations with HRQOL, are poorly understood. PATIENTS AND METHODS: Between 2010 and 2016, patients from 20 European Centers who underwent esophageal cancer surgery, and were disease-free at least 1 year postoperatively were asked to complete LASER, EORTC-QLQ-C30, and QLQ-OG25 questionnaires. Specific symptom questionnaire items that were associated with poor HRQOL as identified by EORTC QLQ-C30 and QLQ-OG25 were identified by multivariable regression analysis and combined to form a tool. RESULTS: A total of 876 of 1081 invited patients responded to the questionnaire, giving a response rate of 81%. Of these, 66.9% stated in the last 6 months they had symptoms associated with their esophagectomy. Ongoing weight loss was reported by 10.4% of patients, and only 13.8% returned to work with the same activities.Three LASER symptoms were correlated with poor HRQOL on multivariable analysis; pain on scars on chest (odds ratio (OR) 1.27; 95% CI 0.97-1.65), low mood (OR 1.42; 95% CI 1.15-1.77) and reduced energy or activity tolerance (OR 1.37; 95% CI 1.18-1.59). The areas under the curves for the development and validation datasets were 0.81 ±â€Š0.02 and 0.82 ±â€Š0.09 respectively. CONCLUSION: Two-thirds of patients experience significant symptoms more than 1 year after surgery. The 3 key symptoms associated with poor HRQOL identified in this study should be further validated, and could be used in clinical practice to identify patients who require increased support.


Assuntos
Neoplasias Esofágicas/cirurgia , Esofagectomia , Complicações Pós-Operatórias/epidemiologia , Qualidade de Vida , Idoso , Estudos Transversais , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autorrelato , Avaliação de Sintomas
8.
J Pediatr ; 241: 126-132.e3, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571020

RESUMO

OBJECTIVES: To determine the time to reverse transcription-polymerase chain reaction (RT-PCR) negativity after the first positive RT-PCR test, factors associated with longer time to RT-PCR negativity, proportion of children seroconverting after proven severe acute respiratory syndrome coronavirus 2 infection, and factors associated with the lack of seroconversion. STUDY DESIGN: The Epidemiological Study of Coronavirus in Children of the Spanish Society of Pediatrics is a multicenter study conducted in Spanish children to assess the characteristics of coronavirus disease 2019. In a subset of patients, 3 serial RT-PCR tests on nasopharyngeal swab specimens were performed after the first RT-PCR test, and immunoglobulin G serology for severe acute respiratory syndrome coronavirus 2 antibodies was performed in the acute and follow-up (<14 and ≥14 days after diagnosis) phase. RESULTS: In total, 324 patients were included in the study. The median time to RT-PCR negativity was 17 days (IQR, 8-29 days), and 35% of patients remained positive more than 4 weeks after the first RT-PCR test. The probability of RT-PCR negativity did not differ across groups defined by sex, disease severity, immunosuppressive drugs, or clinical phenotype. Globally, 24% of children failed to seroconvert after infection. Seroconversion was associated with hospitalization, persistence of RT-PCR positivity, and days of fever. CONCLUSIONS: Time to RT-PCR negativity was long, regardless of the severity of symptoms or other patient features. This finding should be considered when interpreting RT-PCR results in a child with symptoms, especially those with mild symptoms. Seroprevalence and postimmunization studies should consider that 11 in 4 infected children fail to seroconvert.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , COVID-19/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Soroconversão , Adolescente , COVID-19/epidemiologia , Teste Sorológico para COVID-19 , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Sistema de Registros , Estudos Soroepidemiológicos , Espanha/epidemiologia , Fatores de Tempo
9.
Neurobiol Dis ; 153: 105312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33636387

RESUMO

Gene-environment interaction is implicated in the majority of idiopathic Parkinson's disease (PD) risk, and some of the most widespread environmental contaminants are selectively toxic to dopaminergic neurons. Pesticides have long been connected to PD incidence, however, it has become increasingly apparent that other industrial byproducts likely influence neurodegeneration. For example, organic solvents, which are used in chemical, machining, and dry-cleaning industries, are of growing concern, as decades of solvent use and their effluence into the environment has contaminated much of the world's groundwater and soil. Like some pesticides, certain organic solvents, such as the chlorinated halocarbon trichloroethylene (TCE), are mitochondrial toxicants, which are collectively implicated in the pathogenesis of dopaminergic neurodegeneration. Recently, we hypothesized a possible gene-environment interaction may occur between environmental mitochondrial toxicants and the protein kinase LRRK2, mutations of which are the most common genetic cause of familial and sporadic PD. In addition, emerging data suggests that elevated wildtype LRRK2 kinase activity also contributes to the pathogenesis of idiopathic PD. To this end, we investigated whether chronic, systemic TCE exposure (200 mg/kg) in aged rats produced wildtype LRRK2 activation and caused nigrostriatal dopaminergic dysfunction. Interestingly, we found that TCE not only induced LRRK2 kinase activity in the brain, but produced a significant dopaminergic lesion in the nigrostriatal tract, elevated oxidative stress, and caused endolysosomal dysfunction and α-synuclein accumulation. Together, these data suggest that TCE-induced LRRK2 kinase activity contributed to the selective toxicity of dopaminergic neurons. We conclude that gene-environment interactions between certain industrial contaminants and LRRK2 likely influence PD risk.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Solventes/toxicidade , Substância Negra/efeitos dos fármacos , Tricloroetileno/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Interação Gene-Ambiente , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Atividade Motora/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Teste de Campo Aberto , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Agregados Proteicos/efeitos dos fármacos , Ratos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
10.
PLoS Genet ; 14(8): e1007573, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30067846

RESUMO

Drosophila body pigmentation has emerged as a major Evo-Devo model. Using two Drosophila melanogaster lines, Dark and Pale, selected from a natural population, we analyse here the interaction between genetic variation and environmental factors to produce this complex trait. Indeed, pigmentation varies with genotype in natural populations and is sensitive to temperature during development. We demonstrate that the bric à brac (bab) genes, that are differentially expressed between the two lines and whose expression levels vary with temperature, participate in the pigmentation difference between the Dark and Pale lines. The two lines differ in a bab regulatory sequence, the dimorphic element (called here bDE). Both bDE alleles are temperature-sensitive, but the activity of the bDE allele from the Dark line is lower than that of the bDE allele from the Pale line. Our results suggest that this difference could partly be due to differential regulation by AbdB. bab has been previously reported to be a repressor of abdominal pigmentation. We show here that one of its targets in this process is the pigmentation gene tan (t), regulated via the tan abdominal enhancer (t_MSE). Furthermore, t expression is strongly modulated by temperature in the two lines. Thus, temperature sensitivity of t expression is at least partly a consequence of bab thermal transcriptional plasticity. We therefore propose that a gene regulatory network integrating both genetic variation and temperature sensitivity modulates female abdominal pigmentation. Interestingly, both bDE and t_MSE were previously shown to have been recurrently involved in abdominal pigmentation evolution in drosophilids. We propose that the environmental sensitivity of these enhancers has turned them into evolutionary hotspots.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Pigmentação/genética , Fatores de Transcrição/fisiologia , Alelos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Variação Genética , Técnicas de Genotipagem , Análise de Sequência de DNA , Temperatura , Fatores de Transcrição/genética
11.
Inflammopharmacology ; 29(2): 377-391, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33452967

RESUMO

This study aims to evaluate the analgesic and modulating effect of Curcuma longa and Miconia albicans herbal medicines in knee's osteoarthritis (OA) treatment. This longitudinal study evaluated 24 patients with OA. The patients were divided into three groups: ibuprofen (1200 mg/day), C. longa (1000 mg/day) and M. albicans (1000 mg/day). The medications were applied orally for 30 days. The synovial fluid of the knee joint was collect at the first (day 0) and the last medical (day 30) consultation. The groups treated with herbal medicines presented the same results when compared to Ibuprofen. The comparison of the means of Total WOMAC for M. albicans before and after treatment presented a statistically significant difference (mean day 0 = 57.19; mean day 30 = 31.02) as well as variation of Total WOMAC for C. longa (mean day 0 = 54.79; mean day 30 = 37.08). The WOMAC Total and the VASP were compared, it was found that there was a significant decrease in the means in the C. longa and M. albicans groups, as well as in the Ibuprofen group after treatment. The study demonstrated that the treatment of knee OA with C. longa or M. albicans positively interferes with patients pain and functionality, decreased WOMAC and VASP scores, leading to functional improvement of these patients. This is the first clinical study demonstrating the analgesic and anti-inflammatory effect on knee osteoarthritis from M. albicans comparable to Ibuprofen drug.


Assuntos
Curcuma/química , Melastomataceae/química , Osteoartrite do Joelho/tratamento farmacológico , Extratos Vegetais/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/farmacologia , Artralgia/tratamento farmacológico , Feminino , Humanos , Ibuprofeno/farmacologia , Inflamação/tratamento farmacológico , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Resultado do Tratamento
12.
Neurobiol Dis ; 134: 104626, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618685

RESUMO

LRRK2 has been implicated in endolysosomal function and likely plays a central role in idiopathic Parkinson's disease (iPD). In iPD, dopaminergic neurons within the substantia nigra are characterized by increased LRRK2 kinase activity, endolysosomal deficits, and accumulation of autophagic vesicles with incompletely degraded substrates, including α-synuclein. Although LRRK2 has been implicated in endolysosomal and autophagic function, it remains unclear whether inhibition of LRRK2 kinase activity can prevent endolysosomal deficits or reduce dopaminergic neurodegeneration. In this study, we characterized the endolysosomal and autophagic defects in surviving dopaminergic neurons of iPD patient brain tissue. We next showed that these defects could be reproduced reliably in vivo using the rotenone model of iPD. Results suggested that there was impaired endosomal maturation, resulting in lysosomal dysfunction and deficits in protein degradation. A highly selective, brain-penetrant LRRK2 kinase inhibitor not only improved apparent endosomal maturation and lysosomal function, but also prevented rotenone-induced neurodegeneration in vivo. The fact that a LRRK2 kinase inhibitor was capable of preventing the neuropathological and endolysosomal abnormalities observed in human iPD suggests that LRRK2 inhibitors may have broad therapeutic utility in iPD, not only in those who carry a LRRK2 mutation.


Assuntos
Neurônios Dopaminérgicos/patologia , Endossomos/patologia , Inibidores Enzimáticos/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Lisossomos/patologia , Doença de Parkinson , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
13.
Hum Mol Genet ; 27(24): 4218-4230, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30189017

RESUMO

The genetic basis of human neural tube defects (NTDs), such as anencephaly and spina bifida (SB), is complex and heterogeneous. Grainyhead-like genes represent candidates for involvement in NTDs based on the presence of SB and exencephaly in mice carrying loss-of-function alleles of Grhl2 or Grhl3. We found that reinstatement of Grhl3 expression, by bacterial artificial chromosome (BAC)-mediated transgenesis, prevents SB in Grhl3-null embryos, as in the Grhl3 hypomorphic curly tail strain. Notably, however, further increase in expression of Grhl3 causes highly penetrant SB. Grhl3 overexpression recapitulates the spinal NTD phenotype of loss-of-function embryos, although the underlying mechanism differs. However, it does not phenocopy other defects of Grhl3-null embryos such as abnormal axial curvature, cranial NTDs (exencephaly) or skin barrier defects, the latter being rescued by the Grhl3-transgene. Grhl2 and Grhl3 can form homodimers and heterodimers, suggesting a possible model in which defects arising from overexpression of Grhl3 result from sequestration of Grhl2 in heterodimers, mimicking Grhl2 loss of function. This hypothesis predicts that increased abundance of Grhl2 would have an ameliorating effect in Grhl3 overexpressing embryo. Instead, we observed a striking additive genetic interaction between Grhl2 and Grhl3 gain-of-function alleles. Severe SB arose in embryos in which both genes were expressed at moderately elevated levels that individually do not cause NTDs. Furthermore, moderate Grhl3 overexpression also interacted with the Vangl2Lp allele to cause SB, demonstrating genetic interaction with the planar cell polarity signalling pathway that is implicated in mouse and human NTDs.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Fatores de Transcrição/genética , Alelos , Animais , Animais Geneticamente Modificados/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mutação com Perda de Função , Camundongos , Defeitos do Tubo Neural/patologia , Multimerização Proteica/genética , Disrafismo Espinal/patologia
14.
BMC Cancer ; 20(1): 99, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024476

RESUMO

BACKGROUND: Gastrointestinal stromal tumor (GIST) initiation and evolution is commonly framed by KIT/PDGFRA oncogenic activation, and in later stages by the polyclonal expansion of resistant subpopulations harboring KIT secondary mutations after the onset of imatinib resistance. Thus, circulating tumor (ct)DNA determination is expected to be an informative non-invasive dynamic biomarker in GIST patients. METHODS: We performed amplicon-based next-generation sequencing (NGS) across 60 clinically relevant genes in 37 plasma samples from 18 GIST patients collected prospectively. ctDNA alterations were compared with NGS of matched tumor tissue samples (obtained either simultaneously or at the time of diagnosis) and cross-validated with droplet digital PCR (ddPCR). RESULTS: We were able to identify cfDNA mutations in five out of 18 patients had detectable in at least one timepoint. Overall, NGS sensitivity for detection of cell-free (cf)DNA mutations in plasma was 28.6%, showing high concordance with ddPCR confirmation. We found that GIST had relatively low ctDNA shedding, and mutations were at low allele frequencies. ctDNA was detected only in GIST patients with advanced disease after imatinib failure, predicting tumor dynamics in serial monitoring. KIT secondary mutations were the only mechanism of resistance found across 10 imatinib-resistant GIST patients progressing to sunitinib or regorafenib. CONCLUSIONS: ctDNA evaluation with amplicon-based NGS detects KIT primary and secondary mutations in metastatic GIST patients, particularly after imatinib progression. GIST exhibits low ctDNA shedding, but ctDNA monitoring, when positive, reflects tumor dynamics.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , DNA Tumoral Circulante , Tumores do Estroma Gastrointestinal/genética , Adulto , Idoso , Éxons , Feminino , Tumores do Estroma Gastrointestinal/sangue , Tumores do Estroma Gastrointestinal/diagnóstico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Mutação , Metástase Neoplásica , Reação em Cadeia da Polimerase , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carga Tumoral
15.
J Inherit Metab Dis ; 43(6): 1186-1198, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32743799

RESUMO

Glycine abundance is modulated in a tissue-specific manner by use in biosynthetic reactions, catabolism by the glycine cleavage system (GCS), and excretion via glycine conjugation. Dysregulation of glycine metabolism is associated with multiple disorders including epilepsy, developmental delay, and birth defects. Mutation of the GCS component glycine decarboxylase (GLDC) in non-ketotic hyperglycinemia (NKH) causes accumulation of glycine in body fluids, but there is a gap in our knowledge regarding the effects on glycine metabolism in tissues. Here, we analysed mice carrying mutations in Gldc that result in severe or mild elevations of plasma glycine and model NKH. Liver of Gldc-deficient mice accumulated glycine and numerous glycine derivatives, including multiple acylglycines, indicating increased flux through reactions mediated by enzymes including glycine-N-acyltransferase and arginine: glycine amidinotransferase. Levels of dysregulated metabolites increased with age and were normalised by liver-specific rescue of Gldc expression. Brain tissue exhibited increased abundance of glycine, as well as derivatives including guanidinoacetate, which may itself be epileptogenic. Elevation of brain tissue glycine occurred even in the presence of only mildly elevated plasma glycine in mice carrying a missense allele of Gldc. Treatment with benzoate enhanced hepatic glycine conjugation thereby lowering plasma and tissue glycine. Moreover, administration of a glycine conjugation pathway intermediate, cinnamate, similarly achieved normalisation of liver glycine derivatives and circulating glycine. Although exogenous benzoate and cinnamate impact glycine levels via activity of glycine-N-acyltransferase, that is not expressed in brain, they are sufficient to lower levels of glycine and derivatives in brain tissue of treated Gldc-deficient mice.


Assuntos
Encéfalo/metabolismo , Glicina Desidrogenase (Descarboxilante)/genética , Glicina/metabolismo , Hiperglicinemia não Cetótica/enzimologia , Alelos , Animais , Encéfalo/patologia , Hiperglicinemia não Cetótica/patologia , Camundongos , Mutação de Sentido Incorreto
16.
Dev Biol ; 435(2): 130-137, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29397878

RESUMO

Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Defeitos do Tubo Neural/genética , Tubo Neural/fisiologia , Neurulação/genética , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Camadas Germinativas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Placa Neural/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia , Especificidade de Órgãos , RNA Mensageiro/biossíntese , Disrafismo Espinal/embriologia , Disrafismo Espinal/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
17.
PLoS Genet ; 12(8): e1006218, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27508387

RESUMO

Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Interação Gene-Ambiente , Seleção Genética/genética , Animais , Cromatina/genética , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/fisiologia , Feminino , Regulação da Expressão Gênica , Genótipo , Histona-Lisina N-Metiltransferase/genética , Melaninas/biossíntese , Fenótipo , Pigmentação/genética , Regiões Promotoras Genéticas , Temperatura
18.
Inflamm Res ; 67(7): 597-608, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687146

RESUMO

OBJECTIVE AND DESIGN: The present work investigates the modulation of experimental autoimmune encephalomyelitis (EAE) using genistein before the EAE induction. MATERIAL: Female C57BL/6 mice (n = 96 mice/experiment), 4-6 weeks old, were used to induce the EAE. The mice were divided into three experimental groups: non-immunized group, immunized group (EAE), and immunized and treated with genistein group (Genistein). TREATMENT: Genistein was used at a dose of 200 mg/kg s.c. and were initiated 2 days before the immunization and continued daily until day 6 postimmunization. METHODS: Animals were monitored daily for clinical signs of EAE up to day 21. Inflammatory infiltration, demyelination, Toll-like receptor (TLR) expression, cytokines and transcription factors were analyzed in spinal cords. RESULTS: The present study demonstrates, for the first time, the genistein ability to modulate the factors involved in the innate immune response in the early stages of EAE. The genistein therapy delayed the onset of the disease, with reduced inflammatory infiltration and demyelination. In addition, the expression of TLR3, TLR9 and IFN-ß were increased in genistein group, with reduction in the factors of TH1 and Th17 cells. CONCLUSION: These findings shed light on the potential of genistein as a prophylactic strategy for multiple sclerosis (MS) prevention.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Receptores Toll-Like/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/prevenção & controle , Bainha de Mielina/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia
19.
BMC Genomics ; 18(1): 306, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420340

RESUMO

BACKGROUND: The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. RESULTS: The inheritance of resistance studies for Paloma was performed in F2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F2 and F2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. CONCLUSIONS: The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/genética , Doenças das Plantas/microbiologia , Cruzamento , Colletotrichum/genética , Colletotrichum/patogenicidade , Cruzamentos Genéticos , Marcadores Genéticos , Phaseolus/microbiologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
20.
Theor Appl Genet ; 130(8): 1705-1722, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28560590

RESUMO

KEY MESSAGE: Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.


Assuntos
Basidiomycota , Resistência à Doença/genética , Ligação Genética , Phaseolus/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Phaseolus/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa