Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(12): 2572-2576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987605

RESUMO

We identified highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b in wild birds, poultry, and a lion in Peru during November 2022-February 2023 and markers associated with transmission adaptation and antiviral drug resistance. Continuous genomic surveillance is needed to inform public health measures and avoid mass animal deaths.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Vírus da Influenza A/genética , Virus da Influenza A Subtipo H5N1/genética , Mamíferos , Peru/epidemiologia , Filogenia , Aves Domésticas
2.
Sci Rep ; 14(1): 3635, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351134

RESUMO

Highly pathogenic avian Influenza virus (HPAIV) has spread in an unprecedented extent globally in recent years. Despite the large reports of cases in Asia, Europe, and North America, little is known about its circulation in South America. Here, we describe the isolation, and whole genome characterization of HPAIV obtained from sampling 26 wild bird species in Peru, representing one of the largest studies in our region following the latest HPAIV introduction in South America. Out of 147 samples analyzed, 22 were positive for detection of avian influenza virus using a qRT-PCR-based assay. Following inoculation into embryonated chicken eggs, fourteen viral isolates were obtained from which nine isolates were selected for genome characterization, based on their host relevance. Our results identified the presence of HPAIV H5N1 subtype in a highly diverse wild bird species. Phylogenetic analysis revealed that these isolates correspond to the clade 2.3.4.4b, sharing a common ancestor with North American isolates and forming a monophyletic group along with isolates from Chile. Altogether, changes at the amino acid levels compared to their closest relatives indicates the virus is evolving locally, highlighting the need for constant genomic surveillance. This data evidence the chances for spillover events increases as the virus spreads into large populations of immunologically naïve avian species and adding conditions for cross species transmission.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Chile , Peru/epidemiologia , Filogenia , Vírus da Influenza A/genética , Animais Selvagens , Galinhas
3.
Sci Rep ; 13(1): 9619, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316555

RESUMO

This research has developed a piece of sanitizing locker-model equipment for textiles exposed to avian coronavirus, which has been put under the influence of UV light, UV + zinc oxide nanoparticles (phytosynthesized ZnONP), and water + UV, and, in turn, under the influence of the exposure time (60, 120, 180 s). The results linked to the phytosynthesis of ZnONP indicate a novel method of fabricating nanostructured material, nanoparticles with spherical morphology and an average size of 30 nm. The assays were made based on the viral viability of avian coronavirus according to the mortality of SPF embryonated eggs and a Real-Time PCR for viral load estimation. This was a model to evaluate the sanitizing effects against coronaviruses since they share a very similar structure and chemistry with SAR-CoV-2. The influence of the type of textile treatment evidenced the potential effect of the sanitizing UV light, which achieved 100% of embryo viability. The response of the ZnONP + UV nebulization showed a notorious influence of photoactivation according to the exposure time, and the 60-s treatment achieved a decrease of 88.9% in viral viability, compared to 77.8% and 55.6% corresponding to the 120 and 180-s treatments, respectively. Regarding the decrease in viral load between the types of treatments, UV 180 s reduced 98.42% and UV 60 s + ZnONP reduced 99.46%, respectively. The results show the combinatorial effect of UV light and zinc nanoparticles in decreasing the viral viability of avian coronavirus, as a model of other important coronaviruses in public health such as SARS-CoV-2.


Assuntos
COVID-19 , Gammacoronavirus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Antivirais , Raios Ultravioleta , Zinco , SARS-CoV-2
4.
PLoS One ; 17(6): e0268957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35671300

RESUMO

Avian influenza virus (AIV) represents a major concern with productive implications in poultry systems but it is also a zoonotic agent that possesses an intrinsic pandemic risk. AIV is an enveloped, negative-sense and single-stranded RNA virus with a segmented genome. The eight genomic segments, comprising the whole genome, encode for eleven proteins. Within these proteins, Hemagglutinin (HA) and Neuraminidase (NA) are the most relevant for studies of evolution and pathogenesis considering their role in viral replication, and have also been used for classification purposes. Migratory birds are the main hosts and play a pivotal role in viral evolution and dissemination due to their migratory routes that comprise large regions worldwide. Altogether, viral and reservoir factors contribute to the emergence of avian influenza viruses with novel features and pathogenic potentials. The study aimed to conduct surveillance of AIVs in wild birds from Peru. A multi-site screening of feces of migratory birds was performed to isolate viruses and to characterize the whole genome sequences, especially the genes coding for HA and NA proteins. Four-hundred-twenty-one (421) fecal samples, collected between March 2019 and March 2020 in Lima, were obtained from 21 species of wild birds. From these, we isolated five AIV from whimbrel, kelp gull, Franklin's gulls and Mallard, which were of low pathogenicity, including four subtypes as H6N8, H13N6, H6N2 and H2N6. Genetic analysis of HA and NA genes revealed novel features in these viruses and phylogenetic analysis exhibited a close relationship with those identified in North America (US and Canada). Furthermore, H2N6 isolate presented a NA sequence with higher genetic relationship to Chilean isolates. These results highlight that the geographical factor is of major relevance in the evolution of AIV, suggesting that AIV circulating in Peru might represent a new site for the emergence of reassortant AIVs.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Hemaglutininas/genética , Neuraminidase/genética , Peru/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa