Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 22(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039799

RESUMO

New 1-[1-(1H-indol-3-yl) alkyl]-1H-indoles, surprisingly, have been obtained from the addition of indole to a variety of aldehydes under neat conditions. CaO, present in excess, was fundamental for carrying out the reaction with paraformaldehyde. Under the same reaction conditions, aromatic and heteroaromatic aldehydes afforded only classical bis (indolyl) aryl indoles. In this paper, the role of CaO, together with the regiochemistry and the mechanism of the reaction, are discussed in detail. The effect of some selected 3,3'- and 1,3'-diindolyl methane derivatives on cell proliferation of the hepatoma cell line FaO was also evaluated.


Assuntos
Aldeídos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Indóis/química , Neoplasias Hepáticas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solventes
2.
Amino Acids ; 48(3): 887-900, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26614437

RESUMO

Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide-lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Testes de Sensibilidade Microbiana
3.
Phys Chem Chem Phys ; 18(45): 30998-31011, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27805179

RESUMO

Dendrimeric peptides make a versatile group of bioactive peptidomimetics and a potential new class of antimicrobial agents to tackle the pressing threat of multi-drug resistant pathogens. These are branched supramolecular assemblies where multiple copies of the bioactive unit are linked to a central core. Beyond their antimicrobial activity, dendrimeric peptides could also be designed to functionalize the surface of nanoparticles or materials for other medical uses. Despite these properties, however, little is known about the structure-function relationship of such compounds, which is key to unveil the fundamental physico-chemical parameters and design analogues with desired attributes. To close this gap, we focused on a semi-synthetic, two-branched peptide, SB056, endowed with remarkable activity against both Gram-positive and Gram-negative bacteria and limited cytotoxicity. SB056 can be considered the smallest prototypical dendrimeric peptide, with the core restricted to a single lysine residue and only two copies of the same highly cationic 10-mer polypeptide; an octanamide tail is present at the C-terminus. Combining NMR and Molecular Dynamics simulations, we have determined the 3D structure of two analogues. Fluorescence spectroscopy was applied to investigate the water-bilayer partition in the presence of vesicles of variable charge. Vesicle leakage assays were also performed and the experimental data were analyzed by applying an iterative Monte Carlo scheme to estimate the minimum number of bound peptides needed to achieve the release. We unveiled a singular beta hairpin-type structure determined by the peptide chains only, with the octanamide tail available for further functionalization to add new potential properties without affecting the structure.


Assuntos
Antibacterianos/química , Bactérias Gram-Negativas , Simulação de Dinâmica Molecular , Peptídeos/química , Farmacorresistência Bacteriana , Método de Monte Carlo , Espectrometria de Fluorescência
4.
Biochemistry ; 54(36): 5646-56, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26303511

RESUMO

The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane ß-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas Mitocondriais/química , Peptídeos/química , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/química , Canais de Ânion Dependentes de Voltagem/química , Dicroísmo Circular , Biologia Computacional , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho
5.
J Nat Prod ; 78(12): 3041-8, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26606380

RESUMO

Pseudhymenochirin-1Pb (Ps-1Pb; IKIPSFFRNILKKVGKEAVSLIAGALKQS) and pseudhymenochirin-2Pa (Ps-2Pa; GIFPIFAKLLGKVIKVASSLISKGRTE) are amphibian peptides with broad spectrum antimicrobial activities and cytotoxicity against mammalian cells. In the membrane-mimetic solvent 50% (v/v) trifluoroethanol-H2O, both peptides adopt a well-defined α-helical conformation that extends over almost all the sequence and incorporates a flexible bend. Both peptides significantly (p < 0.05) stimulate the rate of release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥ 0.1 nM but produce loss of integrity of the plasma membrane at concentrations ≥ 1 µM. Increasing cationicity by the substitution Glu(17) → l-Lys in Ps-1Pb and Glu(27) → l-Lys in Ps-2Pa generates analogues with increased cytotoxicity and reduced insulin-releasing potency. In contrast, the analogues [R8r]Ps-1Pb and [K8k,K19k]Ps-2Pa, incorporating d-amino acid residues to destabilize the α-helical domains, retain potent insulin-releasing activity but are nontoxic to BRIN-BD11 cells at concentrations of 3 µM. [R8r]Ps-1Pb produces a significant increase in insulin release rate at 0.3 nM and [K8k,K19k]Ps-2Pa at 0.01 nM. Both analogues show low hemolytic activity (IC50 > 100 µM) but retain broad-spectrum antimicrobial activity and remain cytotoxic to a range of human tumor cell lines, albeit with lower potency than the naturally occurring peptides. These analogues show potential for development into agents for type 2 diabetes therapy.


Assuntos
Proteínas de Anfíbios/isolamento & purificação , Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/metabolismo , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular Tumoral , Humanos , Secreção de Insulina , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
6.
J Nat Prod ; 77(11): 2410-7, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25337981

RESUMO

Antimicrobial peptides (AMPs) are effectors of the innate immunity of most organisms. Their role in the defense against pathogen attack and their high selectivity for bacterial cells make them attractive for the development of a new class of antimicrobial drugs. The N-terminal fragment of the frog-skin peptide esculentin-1b (Esc(1-18)) has shown broad-spectrum antimicrobial activity. Similarly to most cationic AMPs, it is supposed to act by binding to and damaging the negatively charged plasma membrane of bacteria. Differently from many other AMPs, Esc(1-18) activity is preserved in biological fluids such as serum. In this work, a structural investigation was performed through NMR spectroscopy. The 3D structure was obtained in the presence of either zwitterionic or negatively charged micelles as membrane models for eukaryotic and prokaryotic membranes, respectively. Esc(1-18) showed a higher affinity for and deeper insertion into the latter and adopted an amphipathic helical structure characterized by a kink at the residue G8. These findings were confirmed by measuring penetration into lipid monolayers. The presence of negatively charged lipids in the bilayer appears to be necessary for Esc(1-18) to bind, to fold in the right three-dimensional structure, and, ultimately, to exert its biological role as an AMP.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Micelas , Fragmentos de Peptídeos/isolamento & purificação , Ranidae/metabolismo , Proteínas de Anfíbios/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Pele/metabolismo
7.
Biochemistry ; 52(41): 7231-41, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24073891

RESUMO

Plasticin-L1 (GLVNGLLSSVLGGGQGGGGLLGGIL) is a conformationally flexible glycine/leucine-rich peptide originally isolated from norepinephrine-stimulated skin secretions of the South-American Santa Fe frog Leptodactylus laticeps (Leptodactylidae). A nuclear magnetic resonance/molecular dynamics characterization of plasticin-L1 in the presence of dodecylphosphocholine (DPC) and DPC/sodium dodecylsulphate micelles as membrane-mimetic models showed that the peptide has affinity for both neutral and anionic membranes. The peptide adopts a stable helical conformation at the N-terminal region and a more disordered helix at the C-terminal region, separated by an unstructured loop wherein the highest number of glycines is localized. In both micelle environments, plasticin-L1 slowly inserts between the detergent head groups but always remains localized at the micelle/water interface. Plasticin-L1 lacks direct antimicrobial activity but stimulates cytokine production by macrophages. Incubation with plasticin-L1 (20 µg/mL) significantly (P < 0.05) increased the production of the proinflammatory cytokines IL-1ß, IL-12, IL-23, and TNF-α from unstimulated peritoneal macrophages from both C57BL/6 and BALB/C mice. The peptide also increased IL-6 production by unstimulated (P < 0.01) and lipopolysaccharide-stimulated (P < 0.01) macrophages, whereas the effects on production of the anti-inflammatory cytokine IL-10 were not significant. These findings suggest that plasticin-L1 may play an immunomodulatory role in vivo by stimulating cytokine production from frog skin macrophages in response to microbial pathogens. This peptide may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.


Assuntos
Proteínas de Anfíbios/química , Anuros/metabolismo , Citocinas/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Pele/metabolismo , Proteínas de Anfíbios/metabolismo , Animais , Células Cultivadas , Proteínas do Olho , Cinética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteínas do Tecido Nervoso , Pele/química
8.
J Am Chem Soc ; 135(20): 7534-44, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23631428

RESUMO

This work is focused on the two more expressed human myoglobin isoforms. In the literature, their different overexpression in high-altitude natives was proposed to be related to alternative/complementary functions in hypoxia. Interestingly, they differ only at residue-54, lysine or glutamate, which is external and far from the main binding site. In order to ascertain whether these two almost identical myoglobins might exert different functions and to contribute to a deeper understanding about myoglobin's oxygen-level dependent functioning, they have been compared with respect to dynamics, heme electronic structure, and NO reactivity at different O2 levels. Electron paramagnetic resonance (EPR) spectroscopy was employed to investigate the electronic structure of the nitrosyl-form, obtaining fundamental clues about a different bond interaction between the heme-iron and the proximal histidine and highlighting striking differences in NO reactivity, especially at a very low pO2. The experimental results well matched with the information provided by molecular dynamics simulations, which showed a significantly different dynamics for the two proteins only in the absence of O2. The single mutation differentiating the two myoglobins resulted in strongly affecting the plasticity of the CD-region (C-helix-loop-D-helix), whose fluctuations, being coupled to the solvent, were found to be correlated with the dynamics of the distal binding site. In the absence of O2, on the one hand a significantly different probability for the histidine-gate opening has been shown by MD simulations, and on the other a different yield of myoglobin-NO formation was experimentally observed through EPR.


Assuntos
Mioglobina/química , Óxido Nítrico/química , Oxigênio/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica
9.
Magn Reson Chem ; 51(3): 176-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23364831

RESUMO

The complexity of biological membranes leads to the use of extremely simplified models in biophysical investigations of membrane-bound proteins and peptides. Liposomes are probably the most widely used membrane models due, especially, to their versatility in terms of electric charge and size. However, liquid-state NMR suffers the lack of such a model, because even the smallest liposomes slowly tumble in solution, resulting in a dramatic signals broadening. Micelles are typically used as good substitutes, with sodium dodecylsulphate (SDS) and dodecylphosphocholine (DPC) being the most widely employed surfactants. However, they are always used separately to mimic prokaryotic and eukaryotic membranes, respectively, and accurate investigations as a function of surface charge cannot be performed. In this work, the critical micelle concentration (CMC) of binary mixtures with different SDS/DPC ratios has been determined by following the chemical shift variation of selected (1)H and (31)P NMR signals as a function of total surfactant concentration. The regular solution theory and the Motomura's formalism have been applied to characterize the micellization both in water and in phosphate buffer saline, and results were compared with those obtained directly from the experimental NMR chemical shift. The ζ-potential and size distribution of the mixed micelles have been estimated with dynamic light scattering measurements. Results showed that SDS and DPC are synergic and can be used together to prepare mixed micelles with different negative/zwitterionic surfactants molar ratio.


Assuntos
Luz , Fosforilcolina/análogos & derivados , Dodecilsulfato de Sódio/análise , Espectroscopia de Ressonância Magnética/normas , Micelas , Fosforilcolina/análise , Padrões de Referência , Espalhamento de Radiação
10.
Pharm Dev Technol ; 18(3): 626-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22324371

RESUMO

The aim of this work was to evaluate silica nanocomposites as topical drug delivery systems for the model drug, caffeine. Preparation, characterization, and skin permeation properties of caffeine-silica nanocomposites are described. Caffeine was loaded into the nanocomposites by grinding the drug with mesoporous silica in a ball mill up to 10 h and the efficiency of the process was studied by XRPD. Formulations were characterized by several methods that include FTIR, XRPD, SEM and TEM. The successful loading of caffeine was demonstrated by XRPD and FTIR. Morphology was studied by SEM that showed particle size reduction while TEM demonstrated formation of both core-shell and multilayered caffeine-silica structures. Solid-state NMR spectra excluded chemical interactions between caffeine and silica matrix, thus confirming that no solid state reactions occurred during the grinding process. Influence of drug inclusion in silica nanocomposite on the in vitro caffeine diffusion into and through the skin was investigated in comparison with a caffeine gel formulation (reference), using newborn pig skin and vertical Franz diffusion cells. Results from the in vitro skin permeation experiments showed that inclusion into the nanocomposite reduced and delayed caffeine permeation from the silica nanocomposite in comparison with the reference, independently from the amount of the tested formulation.


Assuntos
Química Farmacêutica/métodos , Nanocompostos/química , Dióxido de Silício/síntese química , Pele/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Nanocompostos/administração & dosagem , Técnicas de Cultura de Órgãos , Dióxido de Silício/farmacocinética , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Suínos
11.
Biophys J ; 102(5): 1039-48, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22404926

RESUMO

The novel antimicrobial peptide with a dimeric dendrimer scaffold, SB056, was empirically optimized by high-throughput screening. This procedure produced an intriguing primary sequence whose structure-function analysis is described here. The alternating pattern of hydrophilic and hydrophobic amino acids suggests the possibility that SB056 is a membrane-active peptide that forms amphiphilic ß-strands in a lipid environment. Circular dichroism confirmed that the cationic SB056 folds as ß-sheets in the presence of anionic vesicles. Lipid monolayer surface pressure experiments revealed unusual kinetics of monolayer penetration, which suggest lipid-induced aggregation as a membranolytic mechanism. NMR analyses of the linear monomer and the dendrimeric SB056 in water and in 30% trifluoroethanol, on the other hand, yielded essentially unstructured conformations, supporting the excellent solubility and storage properties of this compound. However, simulated annealing showed that many residues lie in the ß-region of the Ramachandran plot, and molecular-dynamics simulations confirmed the propensity of this peptide to fold as a ß-type conformation. The excellent solubility in water and the lipid-induced oligomerization characteristics of this peptide thus shed light on its mechanism of antimicrobial action, which may also be relevant for systems that can form toxic ß-amyloid fibrils when in contact with cellular membranes. Functionally, SB056 showed high activity against Gram-negative bacteria and some limited activity against Gram-positive bacteria. Its potency against Gram-negative strains was comparable (on a molar basis) to that of colistin and polymyxin B, with an even broader spectrum of activity than numerous other reference compounds.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/efeitos dos fármacos , Dendrímeros/metabolismo , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
12.
Biochim Biophys Acta ; 1814(12): 1919-29, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21782983

RESUMO

Myoglobin (Mb), the main cytosolic oxygen storage/deliver protein, is also known to interact with different small ligands exerting other fundamental physiological roles. In Humans up to five different Mb isoforms are present. The two most expressed ones (>90%) differ only at the 54th position, K54 (Mb-I) and E54 (Mb-II) respectively. High-altitude populations are characterized by a higher Mb concentration in skeletal muscle, totally attributable to Mb-II, as well as a higher efficiency of locomotion, leading to the hypothesis of a cause-effect relationship with the evolutionary response to the high-altitude hypoxic environment. In this work, a first structural characterization of the two more expressed human Mb isoforms has been carried out. In particular, a detailed (1)H and (129)Xe NMR study was aimed to characterize the structure of the hydrophobic cavities around the heme group. Experimental results have been compared to those from MD simulations, i.e. volume fluctuations and occurrence. Electronic structure of the heme ring ground state resulted to be comparable for the two investigated isoforms, despite the single point mutation at position 54. However, the use of (129)Xe as a probe revealed small but significant modifications in the structure of internal cavities. MD simulations supported NMR results indicating interesting structural/dynamical differences in the average volume and occurrence of the main cavities lining Mb prosthetic group.


Assuntos
Mioglobina/química , Ressonância Magnética Nuclear Biomolecular , Cristalografia por Raios X , Heme/química , Heme/metabolismo , Humanos , Hidrogênio/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Mioglobina/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Xenônio/química
13.
Arch Pharm (Weinheim) ; 345(3): 195-202, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22715502

RESUMO

A mild and versatile method for the synthesis of some novel indole-1-carbinols has been developed via one-pot reaction of indoles and paraformaldehyde in the presence of an excess of CaO, MgO, ZnO or TiO(2). The solvent-free reaction provided all the indole derivatives in moderate to good yields and short reaction times. Moreover, the effect of some selected indole-1-carbinols on cell proliferation of the hepatoma cell line FaO was evaluated.


Assuntos
Antineoplásicos/síntese química , Indóis/síntese química , Metanol/síntese química , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Metanol/farmacologia , Ratos , Células Tumorais Cultivadas
14.
Heliyon ; 8(3): e09171, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35368527

RESUMO

An important Bronze Age settlement was discovered during an archaeological excavation in the Monte Meana karst cave in south-western Sardinia (Italy) between 2007 and 2012. In this region, the caves were used since the Neolithic for different purposes, such as burials or other rituals. The dig highlighted a rare example of domestic use of a cave and showed a case study of household space of the Early -Middle Bronze Age, at the beginning of the Nuragic civilization. This provided the opportunity to investigate through a multidisciplinary approach, the empirical knowledge of ancient potters and technological characters of local pottery production especially in relation to domestic use, in a context at that time devoid of external cultural interferences. For this purpose, a selection of 24 pottery sherds related to vessel forms for cooking, storage, and eating were studied through macroscopic surveys and archaeometric analysis by petrography, scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The results revealed some discriminant variables (shape, wall thickness, features of the paste, surface smoothing, presence of diagnostic mineralogical phases, and tempers), within the ceramic products of this Sardinian Bronze Age site, showing skillful management of firing temperatures.

15.
J Am Chem Soc ; 132(14): 5156-63, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20095556

RESUMO

Water plays a pivotal role in the correct functioning of proteins. Hydration is fundamental to their stability and flexibility, to folding process and specific functions, and to protein-protein interactions. In this work, the effects of solvation on proteins dynamics have been investigated by employing molecular dynamics simulations and using myoglobin as a model system. The investigation has been focused on solvent waters residing around/inside the protein, with average times of up to tens of nanoseconds, revealing that these slow waters may have significant effects on biological functioning of the protein. Our study pointed out that water is able to interact with proteins in diverse ways, leading to different kinds of perturbations in their intrinsic dynamic behavior. In particular, for myoglobin it was found that a water molecule can (i) "block" entry/escape of ligands to/from a particular docking site, (ii) act as a "wedge" modulating the dynamics of internal cavities, or (iii) join a "flow" of waters taking a ligand into (or "washing" a ligand away from) the protein interior. The information gathered in this work allowed us to provide a fingerprint of protein solvation state, the hydration sites map, which may represent a novel tool for comparing different forms/species of globular proteins.


Assuntos
Simulação de Dinâmica Molecular , Mioglobina/química , Ligantes , Modelos Moleculares , Solventes/química
16.
J Am Chem Soc ; 131(33): 11825-32, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19653680

RESUMO

Internal cavities, which are central to the biological functions of myoglobin, are exploited by gaseous ligands (e.g., O(2), NO, CO, etc.) to migrate inside the protein matrix. At present, it is not clear whether the ligand makes its own way inside the protein or instead the internal cavities are an intrinsic feature of myoglobin. To address this issue, standard molecular dynamics simulations were performed on horse-heart met-myoglobin with no ligand migrating inside the protein matrix. To reveal intrinsic internal pathways, the use of a statistical approach was applied to the cavity calculation, with special emphasis on the major pathway from the distal pocket to Xe1. Our study points out the remarkable dynamical behavior of Xe4, whose "breathing motions" may facilitate migration of ligands through the distal region. Additionally, our results highlight a two-way path for a ligand to diffuse through the proximal region, possibly allowing an alternative route in case Xe1 is occupied. Finally, our approach has led us to the identification of key residues, such as leucines, that may work as switches between cavities.


Assuntos
Metamioglobina/química , Metamioglobina/metabolismo , Modelos Moleculares , Movimento , Animais , Ligantes , Conformação Proteica
17.
Proteins ; 71(3): 1231-6, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18041761

RESUMO

The relatively small size of myoglobin makes it suitable for the investigation of the ligand escape process in respiratory proteins and, in general, an ideal model system for the study of the more general structure-function paradigm. In this work, we use Molecular Dynamics simulations combined with an accelerated algorithm, the metadynamics, to probe the escape of CO from myoglobin. Our approach permits to quantitatively describe the escape process via the reconstruction of the associated free energy surface. Additionally, hints on the involvement of a larger numbers of residues than hitherto assumed in the gating process are extracted from our data.


Assuntos
Monóxido de Carbono/química , Simulação por Computador , Modelos Moleculares , Mioglobina/química , Algoritmos , Animais , Monóxido de Carbono/metabolismo , Mioglobina/metabolismo , Estrutura Secundária de Proteína , Eletricidade Estática , Baleias
18.
J Phys Chem B ; 112(49): 15856-66, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19368018

RESUMO

Using xenon atoms as a biomolecular probe raises the concern of whether they may influence in some way the molecular and electronic structure of the system under study. In this paper, the relevance of guest-host interactions in xenon complexes with paramagnetic myoglobins (Mbs) is thoroughly analyzed, and the issue about the use of xenon to detect and characterize voids within flexible biomolecules is critically discussed. A detailed 1H NMR study useful for describing the hydrophobic cavities close to the active site of low-spin ferric myoglobins with respect to their interaction with the xenon atom is presented. The method is subsequently validated by the analysis of Xe-Mb with two different myoglobins, extracted from horse and pig. These myoglobins differ by 14 amino acids. One of these, Ile142 in horse Mb, is located in the proximal cavity, which is the main xenon binding site in horse Mb, and is replaced by Met142 in pig Mb. We demonstrated specific behaviors associated with the capacity of each of the two myoglobins to bind xenon and provided site-specific information on the host-guest interaction. Moreover, 1H NMR measurements produce a picture of xenon-related local distortions of the protein, associated with a functionally relevant residue located right at the active site, the proximal hystidine E7(His93). According to the 1H NMR data, xenon induces the tilt of the residue His93 relative to the heme plane and consequently causes an alteration of the magnetic axes. Similar conclusions are obtained both for pig cyano-myoglobin and for horse cyano-myoglobin, the structural deformation being in the former of minor entity.


Assuntos
Metamioglobina/química , Metamioglobina/metabolismo , Xenônio/química , Animais , Domínio Catalítico , Cavalos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Terciária de Proteína , Suínos
19.
Bioorg Med Chem Lett ; 18(5): 1559-62, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18262418

RESUMO

Two new cyclohexenones (antheminones A and B) and a new cyclohexanone, (antheminone C) along with five known compounds were isolated from the leaves of Anthemis maritima L. The structures were mainly deduced from extensive 1D and 2D NMR spectroscopy and mass spectrometry. The new compounds were tested in vitro for their cytotoxic activity against adherent and non-adherent cancer cell lines. Antheminones A and C exhibited significant antiproliferative activity against leukemia cells with IC(50) values ranging from 3.2 to 14 microM.


Assuntos
Anthemis/química , Cicloexanonas/química , Cicloexanonas/toxicidade , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Cicloexanonas/isolamento & purificação , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Folhas de Planta/química
20.
ACS Omega ; 3(9): 11415-11425, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320261

RESUMO

Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs' functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main ß-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel's wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the ß-barrel domain, the observed differences are relevant for those whole protein's functions in which a protein-protein interaction is mediated by the N-terminal domain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa