Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 339: 117948, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080094

RESUMO

The safeguarding of Australian outdoor stone heritage is currently limited by a lack of information concerning mechanisms responsible for the degradation of the built heritage. In this study, the bacterial community colonizing the stone surface of an outdoor sculpture located at the Church of St. John the Evangelist in Melbourne was analysed, providing an overview of the patterns of microbial composition associated with stone in an anthropogenic context. Illumina MiSeq 16S rRNA gene sequencing together with confocal laser microscope investigations highlighted the bacterial community was composed of both phototrophic and chemotrophic microorganisms characteristic of stone and soil, and typical of arid, salty and urban environments. Cardinal exposure, position and surface geometry were the most important factors in determining the structure of the microbial community. The North-West exposed areas on the top of the sculpture with high light exposure gave back the highest number of sequences and were dominated by Cyanobacteria. The South and West facing in middle and lower parts of the sculpture received significantly lower levels of radiation and were dominated by Actinobacteria. Proteobacteria were observed as widespread on the sculpture. This pioneer research provided an in-depth investigation of the microbial community structure on a deteriorated artistic stone in the Australian continent and provides information for the identification of deterioration-associated microorganisms and/or bacteria beneficial for stone preservation.


Assuntos
Biofilmes , Cianobactérias , Austrália , Cianobactérias/genética , RNA Ribossômico 16S/genética , Escultura
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430545

RESUMO

Zosteric acid (ZA) is a secondary metabolite of the seagrass Zostera marina, with antibiofilm activity against fungi. Information concerning its mechanisms of action is lacking and this limits the development of more potent derivatives based on the same target and activity structure. The aim of this work was to investigate the ZA mode of action by analyzing the metabolic status of Candida albicans biofilm and its protein expression profile upon ZA treatment. Fourier-Transform Infrared Spectroscopy confirmed that ZA modified the metabolomic response of treated cells, showing changes in the spectral regions, mainly related to the protein compartment. Nano Liquid Chromatography-High-Resolution Mass Spectrometry highlighted that 10 proteins were differentially expressed in the C. albicans proteome upon ZA treatment. Proteins involved in the biogenesis, structure and integrity of cell walls as well as adhesion and stable attachment of hyphae were found downregulated, whereas some proteins involved in the stress response were found overexpressed. Additionally, ZA was involved in the modulation of non-DNA-based epigenetic regulatory mechanisms triggered by reactive oxygen species. These results partially clarified the ZA mechanism of action against fungi and provided insight into the major C. albicans pathways responsible for biofilm formation.


Assuntos
Candida albicans , Proteômica , Biofilmes , Ésteres do Ácido Sulfúrico/farmacologia
3.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382580

RESUMO

Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Equipamentos e Provisões/microbiologia , Polímeros/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Biofilmes/crescimento & desenvolvimento , Humanos , Polímeros/química , Propriedades de Superfície
4.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331112

RESUMO

The extracts of two mangrove species, Bruguiera cylindrica and Laguncularia racemosa, have been analyzed at sub-lethal concentrations for their potential to modulate biofilm cycles (i.e., adhesion, maturation, and detachment) on a bacterium, yeast, and filamentous fungus. Methanolic leaf extracts were also characterized, and MS/MS analysis has been used to identify the major compounds. In this study, we showed the following. (i) Adhesion was reduced up to 85.4% in all the models except for E. coli, where adhesion was promoted up to 5.10-fold. (ii) Both the sum and ratio of extracellular polysaccharides and proteins in mature biofilm were increased up to 2.5-fold and 2.6-fold in comparison to the negative control, respectively. Additionally, a shift toward a major production of exopolysaccharides was found coupled with a major production of both intracellular and extracellular reactive oxygen species. (iii) Lastly, detachment was generally promoted. In general, the L. racemosa extract had a higher bioactivity at lower concentrations than the B. cylindrica extract. Overall, our data showed a reduction in cells/conidia adhesion under B. cylindrica and L. racemosa exposure, followed by an increase of exopolysaccharides during biofilm maturation and a variable effect on biofilm dispersal. In conclusion, extracts either inhibited or enhanced biofilm development, and this effect depended on both the microbial taxon and biofilm formation step.


Assuntos
Acanthaceae/química , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Cromatografia Líquida , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Extratos Vegetais/química , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo
5.
J Environ Manage ; 245: 264-272, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158678

RESUMO

The lack of deep knowledge of plant pathogenic fungal biofilms is reflected in the few existing environmental-friendly options for controlling fungal plant disease. Indeed, chemical fungicides still dominate the market but present-day concerns about their real efficacy, increasing awareness of the risk they pose to human health and the environment, and the incidence of fungicide resistance have all led to the current trend of near zero-market-tolerance for pesticide residues in fruit and vegetables. Here, essential oils (PK and PK-IK) from the edible leaves of two cultivars of Perilla frutescens are proposed as new, effective, non-toxic, eco-friendly pesticide-free options suitable for a preventive or integrative approach for sustainable crop protection and product preservation. PK and PK-IK were extracted and characterized, and their ability to affect the biofilm formation of the phytopathogenic model fungi Colletotrichum musae, Fusarium dimerum and Fusarium oxysporum was studied at non-lethal doses. Both essential oils at 1000 and 2000 mg l-1 showed excellent anti-biofilm performance: i) reducing conidia adhesion up to 80.3 ±â€¯16.2%; ii) inhibiting conidia germination up to 100.0 ±â€¯0.0%; iii) affecting biofilm structural development, with a reduction in dry weight of up to 100.0 ±â€¯0.0% and extracellular polysaccharides and proteins up to 81.4 ±â€¯8.0% and 51.0 ±â€¯6.1% respectively. In all cases PK-IK showed better activity than PK.


Assuntos
Óleos Voláteis , Perilla frutescens , Biofilmes , Fungos , Humanos , Folhas de Planta
6.
Crit Rev Microbiol ; 44(5): 633-652, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30016175

RESUMO

Any surface of human interest can serve as a substrate for biofilm growth, sometimes with detrimental effects. The social and economic consequences of biofilm-mediated damage to surfaces are significant, the financial impact being estimated to be billions of dollars every year. After describing traditional biocide-based approaches for the remediation of biofilm-affected surfaces, this review deals with more recent developments in material science, focusing on non-toxic, eco-sustainable nature-inspired biomaterials with anti-biofilm properties superior to the conventional biocide-based approaches in terms of addressing the biofilm problem.


Assuntos
Materiais Biocompatíveis/química , Biofilmes , Ciência dos Materiais/tendências , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Materiais Biocompatíveis/farmacologia , Biofilmes/crescimento & desenvolvimento , Polímeros/química , Polímeros/farmacologia
7.
BMC Complement Altern Med ; 18(1): 168, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843708

RESUMO

BACKGROUND: Biofilms have great significance in healthcare-associated infections owing to their inherent tolerance and resistance to antimicrobial therapies. New approaches to prevent and treat unwanted biofilms are urgently required. To this end, three seagrass species (Enhalus acoroides, Halophila ovalis and Halodule pinifolia) collected in Vietnam and in India were investigated for their effects in mediating non-lethal interactions on sessile bacterial (Escherichia coli) and fungal (Candida albicans) cultures. The present study was focused on anti-biofilm activities of seagrass extracts, without killing cells. METHODS: Methanolic extracts were characterized, and major compounds were identified by MS/MS analysis. The antibiofilm properties of the seagrass extracts were tested at sub-lethal concentrations by using microtiter plate adhesion assay. The performance of the most promising extract was further investigated in elegant bioreactors to reproduce mature biofilms both at the solid/liquid and the solid/air interfaces. Dispersion and bioluminescent assays were carried out to decipher the mode of action of the bioactive extract. RESULTS: It was shown that up to 100 ppm of crude extracts did not adversely affect microbial growth, nor do they act as a carbon and energy source for the selected microorganisms. Seagrass extracts appear to be more effective in deterring microbial adhesion on hydrophobic surfaces than on hydrophilic. The results revealed that non-lethal concentrations of E. acoroides leaf extract: i) reduce bacterial and fungal coverage by 60.9 and 73.9%, respectively; ii) affect bacterial biofilm maturation and promote dispersion, up to 70%, in fungal biofilm; iii) increase luminescence in Vibrio harveyi by 25.8%. The characterization of methanolic extracts showed the unique profile of the E. acoroides leaf extract. CONCLUSIONS: E. acoroides leaf extract proved to be the most promising extract among those tested. Indeed, the selected non-lethal concentrations of E. acoroides leaf extract were found to exert an antibiofilm effect on C. albicans and E. coli biofilm in the first phase of biofilm genesis, opening up the possibility of developing preventive strategies to hinder the adhesion of microbial cells to surfaces. The leaf extract also affected the dispersion and maturation steps in C. albicans and E. coli respectively, suggesting an important role in cell signaling processes.


Assuntos
Biofilmes/efeitos dos fármacos , Hydrocharitaceae/química , Extratos Vegetais/farmacologia , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Flavonoides/farmacologia , Espectrometria de Massas em Tandem
8.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545074

RESUMO

The protease α-chymotrypsin (α-CT) was covalently immobilized on a low-density polyethylene (LDPE) surface, providing a new non-leaching material (LDPE-α-CT) able to preserve surfaces from biofilm growth over a long working timescale. The immobilized enzyme showed a transesterification activity of 1.24 nmol/h, confirming that the immobilization protocol did not negatively affect α-CT activity. Plate count viability assays, as well as confocal laser scanner microscopy (CLSM) analysis, showed that LDPE-α-CT significantly impacts Escherichia coli biofilm formation by (i) reducing the number of adhered cells (-70.7 ± 5.0%); (ii) significantly affecting biofilm thickness (-81.8 ± 16.7%), roughness (-13.8 ± 2.8%), substratum coverage (-63.1 ± 1.8%), and surface to bio-volume ratio (+7.1 ± 0.2-fold); and (iii) decreasing the matrix polysaccharide bio-volume (80.2 ± 23.2%). Additionally, CLSM images showed a destabilized biofilm with many cells dispersing from it. Notably, biofilm stained for live and dead cells confirmed that the reduction in the biomass was achieved by a mechanism that did not affect bacterial viability, reducing the chances for the evolution of resistant strains.


Assuntos
Biofilmes/crescimento & desenvolvimento , Quimotripsina/farmacologia , Enzimas Imobilizadas/farmacologia , Escherichia coli/fisiologia , Polietileno/química , Biofilmes/efeitos dos fármacos , Biomassa , Escherichia coli/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Propriedades de Superfície
9.
Biofouling ; 33(3): 235-251, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28270055

RESUMO

In this research, salicylic acid is proposed as an alternative biocide-free agent suitable for a preventive or integrative anti-biofilm approach. Salicylic acid has been proved to: (1) reduce bacterial adhesion up to 68.1 ± 5.6%; (2) affect biofilm structural development, reducing viable biomass by 97.0 ± 0.7% and extracellular proteins and polysaccharides by 83.9 ± 2.5% and 49.5 ± 5.5% respectively; and (3) promote biofilm detachment 3.4 ± 0.6-fold. Moreover, salicylic acid treated biofilm showed an increased amount of intracellular (2.3 ± 0.2-fold) and extracellular (2.1 ± 0.3-fold) reactive oxygen species, and resulted in increased production of the quorum sensing signal indole (7.6 ± 1.4-fold). For the first time, experiments revealed that salicylic acid interacts with proteins that play a role in quorum sensing, reactive oxygen species accumulation, motility, extracellular polymeric matrix components, transport and metabolism.


Assuntos
Biofilmes/efeitos dos fármacos , Escherichia coli/fisiologia , Percepção de Quorum/efeitos dos fármacos , Ácido Salicílico/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biomassa , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Indóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943025

RESUMO

Increasing numbers of researches have suggested that some drugs with reactive oxygen species (ROS)-mediated mechanisms of action modulate biofilm formation of some pathogenic strains. However, the full contribution of ROS to biofilm development is still an open question. In this paper, the correlations between the antioxidant drug Erdosteine (Er) and its active Metabolite I (Met I), ROS and biofilm development of two strains of methicillin resistant Staphylococcus aureus are presented. Experiments revealed that Er and Met I at 2 and 5 mg/L increased up to three orders of magnitude the number of biofilm-dwelling cells, while the content of ROS within the biofilms was reduced above the 87%, with a major effect of Met I in comparison to Er. Comparative proteomics showed that, 5 mg/L Met I modified the expression of 30% and 65% of total proteins in the two strains respectively. Some proteins involved in cell replication were upregulated, and a nitric oxide-based mechanism is assumed to modulate the biofilm development by changing quorum sensitive pathways. Additionally, several proteins involved in virulence were downregulated in the presence of Met I, suggesting that treated cells, despite being greater in number, might have lost part of their virulence.

11.
Antioxidants (Basel) ; 10(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204135

RESUMO

The effects of natural compounds on biofilm formation have been extensively studied, with the goal of identifying biofilm formation antagonists at sub-lethal concentrations. Salicylic and cinnamic acids are some examples of these compounds that interact with the quinone oxidoreductase WrbA, a potential biofilm modulator and an antibiofilm compound biomarker. However, WrbA's role in biofilm development is still poorly understood. To investigate the key roles of WrbA in biofilm maturation and oxidative stress, Escherichia coli wild-type and ∆wrbA mutant strains were used. Furthermore, we reported the functional validation of WrbA as a molecular target of salicylic and cinnamic acids. The lack of WrbA did not impair planktonic growth, but rather affected the biofilm formation through a mechanism that depends on reactive oxygen species (ROS). The loss of WrbA function resulted in an ROS-sensitive phenotype that showed reductions in biofilm-dwelling cells, biofilm thickness, matrix polysaccharide content, and H2O2 tolerance. Endogenous oxidative events in the mutant strain generated a stressful condition to which the bacterium responded by increasing the catalase activity to compensate for the lack of WrbA. Cinnamic and salicylic acids inhibited the quinone oxidoreductase activity of purified recombinant WrbA. The effects of these antibiofilm molecules on WrbA function was proven for the first time.

12.
Sci Total Environ ; 756: 144075, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33280882

RESUMO

Previous studies have provided evidence that bioremediation deals a novel approach to graffiti removal, thereby overcoming well-known limitations of current cleaning methods. In the present study eight bacteria aerobic, mesophilic and culturable from the American ATCC and the German DSMZ collections of microorganisms, some isolated from car paint waste, colored deposits in a pulp dryer and wastewater from dye works, were tested in the removal of silver and black graffiti spray paints using immersion strategies with glass slides. Absorbance at 600 nm and live/dead assays were performed to estimate bacterial density and activity in all samples. Also, pH and dissolved organic carbon (DOC) and inorganic carbon (DIC) measurements in the liquid media were made, as well as, thickness, colorimetric and infrared (FTIR) spectroscopy measurements in graffiti paint layers were used to evaluate the presence of the selected bacteria in the samples and the graffiti bioremoval capacity of bacteria. Data demonstrated that of the eight bacteria studied, Enterobacter aerogenes, Comamonas sp. and a mixture of Bacillus sp., Delftia lacustris, Sphingobacterium caeni, and Ochrobactrum anthropi were the most promising for bioremoval of graffiti. According to significant changes in FTIR spectra, indicating an alteration of the paint polymeric structure, coupled with the presence of a consistent quantity of live bacteria in the medium as well as a significant increase of DIC (a measure of metabolic activity) and a change in paint color.


Assuntos
Delftia , Sphingobacterium , Bactérias , Biodegradação Ambiental
13.
Sci Total Environ ; 790: 148204, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380242

RESUMO

There are billions of books that in recent and in ancient times have been produced by the human race containing evidence of its intellectual and cultural efforts. Even when stored in libraries, not all these books survive over time undamaged, because in the biosphere their materials are potential nutrients. This is the unfortunate case of the History and Historical Documentation Library of the University of Milan, where biological agents have badly affected rare and valuable old books. An entomological monitoring was carried out using sticky traps and collecting insects during inspections. The beetle Gastrallus pubens Fairmaire, rarely identified in European libraries so far, was the main biological agent responsible for the book damage, since several tunnels due to larval activity and holes made by adults were observed. Using the Illumina MiSeq sequencing technology, Proteobacteria, Firmicutes and Actinobacteria were found to be the most abundant phyla. Ascomycota was the dominant phylum among three fungal phyla. As bacteria and fungi spread by the insects are primary indications of the insect presence in the library, in this paper a potential biomarker able to detect the G. pubens presence before visible infestation was searched for among the bacterial and fungal community peculiar in the insect frass and gut, but also found on books and the surfaces of shelves. Symbiotaphrina, an ascomycete fungus described as one of the symbiotic levuliform fungi, present in the anobiid beetles' gut, was the only one found in all samples analyzed and has therefore been proposed as a putative biomarker.


Assuntos
Ascomicetos , Fungos , Bactérias , Documentação , Humanos , Medição de Risco , Simbiose
14.
Microorganisms ; 8(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036341

RESUMO

The microbial deterioration of cultural heritage includes physical and chemical damage as well as aesthetic alteration. With the technological advancement, a plethora of techniques for removing unwanted microorganisms have opened up new opportunities for microbiologists and conservators. This article reviews the most applied, up-to-date, and sustainable techniques developed for the control of cultural heritage microbial deterioration presenting noteworthy case studies. These techniques include chemical methods, i.e., traditional biocides and nanoparticles; physical methods, such as mechanical removal, UV irradiation, gamma radiation, laser cleaning, heat shocking, microwaves, and dry ice treatment; and biological methods, such as natural molecules with biocidal activity, enzymes, and microorganisms. The application of control systems requires the comprehension of their behavior toward the unwanted microorganisms and possible interactions with the heritage materials. This overview shows also the control methods drawbacks for the purpose of creating awareness in selecting the most suitable technique or combination of techniques.

15.
Microorganisms ; 7(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817370

RESUMO

This study investigated in-vitro the non-lethal effects of N-acetylcysteine (NAC) on Xylella fastidiosa subspecies pauca strain De Donno (Xf-DD) biofilm. This strain was isolated from the olive trees affected by the olive quick decline syndrome in southern Italy. Xf-DD was first exposed to non-lethal concentrations of NAC from 0.05 to 1000 µM. Cell surface adhesion was dramatically reduced at 500 µM NAC (-47%), hence, this concentration was selected for investigating the effects of pre-, post- and co-treatments on biofilm physiology and structural development, oxidative homeostasis, and biofilm detachment. Even though 500 µM NAC reduced bacterial attachment to surfaces, compared to the control samples, it promoted Xf-DD biofilm formation by increasing: (i) biofilm biomass by up to 78% in the co-treatment, (ii) matrix polysaccharides production by up to 72% in the pre-treatment, and (iii) reactive oxygen species levels by 3.5-fold in the co-treatment. Xf-DD biofilm detachment without and with NAC was also investigated. The NAC treatment did not increase biofilm detachment, compared to the control samples. All these findings suggested that, at 500 µM, NAC diversified the phenotypes in Xf-DD biofilm, promoting biofilm formation (hyper-biofilm-forming phenotype) and discouraging biofilm detachment (hyper-attachment phenotype), while increasing oxidative stress level in the biofilm.

16.
Environ Pollut ; 245: 754-763, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500755

RESUMO

Ingestion of silver nanoparticles (AgNPs) is inevitable linked to their widespread use in food, medicines and other consumer products. However, their effects on human microbiota at non-lethal concentrations remain poorly understood. In this study, the interactions among 1 µg mL-1 AgNPs, the intestinal microbiota, and the probiotic Bacillus subtilis (BS) were tested using in-vitro batch fermentation models inoculated with human fecal matter. Results from metagenomic investigations revealed that the core bacterial community was not affected by the exposure of AgNPs and BS at the later stage of fermentation, while the proportions of rare species changed drastically with the treatments. Furthermore, shifts in the Firmicutes/Bacteriodetes (F/B) ratios were observed after 24 h with an increase in the relative abundance of Firmicutes species and a decrease in Bacteroidetes in all fermentation cultures. The co-exposure to AgNPs and BS led to the lowest F/B ratio. Fluorescent in-situ hybridization analyses indicated that non-lethal concentration of AgNPs negatively affected the relative percentage of Faecalibacterium prausnitzii and Clostridium coccoides/Eubacterium rectales taxa in the fermentation cultures after 24 h. However, exposure to single and combined treatments of AgNPs and BS did not change the overall diversity of the fecal microflora. Functional differences in cell motility, translation, transport, and xenobiotics degradation occurred in AgNPs-treated fermentation cultures but not in AgNPs+BS-treated samples. Compared to the control samples, treated fecal cultures showed no significant statistical differences in terms of short-chain fatty acids profiles, cytotoxic and genotoxic effects on Caco-2 cell monolayers. Overall, AgNPs did not affect the composition and diversity of the core fecal microflora and its metabolic and toxic profiles. This work indicated a chemopreventive role of probiotic on fecal microflora against AgNPs, which were shown by the decrease of F/B ratio and the unaltered state of some key metabolic pathways.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas , Probióticos/farmacologia , Prata/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bacteroidetes , Células CACO-2 , Clostridium , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fermentação , Humanos , Hibridização in Situ Fluorescente
17.
Front Microbiol ; 8: 2698, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379489

RESUMO

Nanotechnology applications are expected to bring a range of benefits to the food sector, aiming to provide better quality and conservation. In this research, the physiological response of both an Escherichia coli mono-species biofilm and Caco-2 intestinal cells to sub-lethal concentrations of silver nanoparticles (AgNPs) has been investigated. In order to simulate the anaerobic and aerobic compartments required for bacteria and intestinal cells growth, a simplified semi-batch model based on a transwell permeable support was developed. Interaction between the two compartments was obtained by exposing Caco-2 intestinal cells to the metabolites secreted by E. coli biofilm after its exposure to AgNPs. To the best of the authors' knowledge, this study is the first to investigate the effect of AgNPs on Caco-2 cells that takes into consideration previous AgNP-intestinal biofilm interactions, and at concentrations mimicking real human exposure. Our data show that 1 µg/mL AgNPs in anaerobic conditions (i) promote biofilm formation up to 2.3 ± 0.3 fold in the first 72 h of treatment; (ii) increase reactive oxygen species (ROS) production to 84 ± 21% and change the physiological status of microbial cells after 96 h of treatment; (iii) seriously affect a 72-h old established biofilm, increasing the level of oxidative stress to 86 ± 21%. Moreover, the results indicate that oxygen renders the biofilm more adequate to counteract AgNP effects. Comet assays on Caco-2 cells demonstrated a protective role of biofilm against the genotoxic effect of 1 µg/mL AgNPs on intestinal epithelial cells.

18.
J Biomed Mater Res A ; 105(12): 3251-3261, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28795783

RESUMO

The present work concerns an efficient strategy to obtain novel medical devices materials able to inhibit biofilm formation. The new materials were achieved by covalent grafting of p-aminocinnamic or p-aminosalicylic acids on low density polyethylene coupons. The polyethylene surface, previously activated by oxygen plasma treatment, was functionalized using 2-hydroxymethylmetacrylate as linker. The latter was reacted with succinic anhydride affording the carboxylic end useful for the immobilization of the antibiofilm molecules. The modified surface was characterized by scanning electron microscope, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared and fluorescence analyses. The antibiofilm activity of the modified materials were tested against Escherichia coli biofilm grown in the Center of Disease Control biofilm reactor. The results revealed that the grafted cinnamic and salicylic acid derivatives reduced biofilm biomass, in comparison with the control, by 73.7 ± 10.7% and 63.4 ± 7.1%, respectively. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3251-3261, 2017.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Polietileno/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Escherichia coli/fisiologia , Infecções por Escherichia coli/prevenção & controle , Humanos , Polietileno/química
19.
Biointerphases ; 11(4): 04B308, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27984857

RESUMO

The present work is aimed at comparing the effects of sublethal concentrations of silver nanoparticles (AgNPs) on the growth kinetic, adhesion ability, oxidative stress, and phenotypic changes of model bacteria (Escherichia coli and Bacillus subtilis) under both aerobic and anaerobic conditions. Growth kinetic tests conducted in 96-well microtiter plates revealed that sublethal concentrations of AgNPs do not affect E. coli growth, whereas 1 µg/ml AgNPs increased B. subtilis growth rate under aerobic conditions. At the same concentration, AgNPs promoted B. subtilis adhesion, while it discouraged E. coli attachment to the surface in the presence of oxygen. As determined by 2,7-dichlorofluorescein-diacetate assays, AgNPs increased the formation of intracellular reactive oxygen species, but not at the highest concentrations, suggesting the activation of scavenging systems. Finally, motility assays revealed that 0.01 and 1 µg/ml AgNPs, respectively, promoted surface movement in E. coli and B. subtilis under aerobic and anaerobic conditions. The results demonstrate that E. coli and B. subtilis react differently from AgNPs over a wide range of sublethal concentrations examined under both aerobic and anaerobic conditions. These findings will help elucidate the behavior and impact of engineered nanoparticles on microbial ecosystems.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas/metabolismo , Prata/farmacologia , Aerobiose , Anaerobiose , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Locomoção/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/análise
20.
PLoS One ; 10(7): e0131519, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132116

RESUMO

The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i) the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii) the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii) the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cinamatos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Ésteres do Ácido Sulfúrico/farmacologia , Ânions , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Ácidos Carboxílicos/química , Cinamatos/síntese química , Cinamatos/química , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Hidrogênio/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Ligação Proteica , Proteínas Repressoras/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ésteres do Ácido Sulfúrico/síntese química , Ésteres do Ácido Sulfúrico/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa