Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(36): 11258-63, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305930

RESUMO

Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.


Assuntos
Mitose , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Fuso Acromático/metabolismo , Actomiosina/metabolismo , Animais , Forma Celular , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microtúbulos/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Reprodutibilidade dos Testes
2.
Biophys J ; 111(3): 589-600, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508442

RESUMO

The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.


Assuntos
Membrana Celular/metabolismo , Mitose , Reologia , Fenômenos Biomecânicos , Elasticidade , Células HeLa , Humanos , Viscosidade
3.
Methods ; 60(2): 186-94, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23473778

RESUMO

The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties.


Assuntos
Microscopia de Força Atômica/métodos , Fenômenos Biomecânicos , Forma Celular , Força Compressiva , Células HeLa , Humanos , Microscopia de Força Atômica/instrumentação , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/fisiologia , Estresse Fisiológico
4.
Nat Commun ; 8(1): 1266, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097687

RESUMO

To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.


Assuntos
Actomiosina/metabolismo , Forma Celular/genética , Proteínas de Membrana/genética , Mitose/genética , Proteína Desglicase DJ-1/genética , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos/genética , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Metáfase/genética , Camundongos , Microscopia de Força Atômica , Miosina Tipo II/metabolismo , Doença de Parkinson/genética , Fenótipo , Pressão , Análise de Célula Única , Fuso Acromático/metabolismo , Tensão Superficial , Transgenes
5.
Nat Cell Biol ; 17(2): 148-59, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25621953

RESUMO

Actomyosin-dependent mitotic rounding occurs in both cell culture and tissue, where it is involved in cell positioning and epithelial organization. How actomyosin is regulated to mediate mitotic rounding is not well understood. Here we characterize the mechanics of single mitotic cells while imaging actomyosin recruitment to the cell cortex. At mitotic onset, the assembly of a uniform DIAPH1-dependent F-actin cortex coincides with initial rounding. Thereafter, cortical enrichment of F-actin remains stable while myosin II progressively accumulates at the cortex, and the amount of myosin at the cortex correlates with intracellular pressure. Whereas F-actin provides only short-term (<10 s) resistance to mechanical deformation, myosin sustains intracellular pressure for a longer duration (>60 s). Our data suggest that progressive accumulation of myosin II to the mitotic cell cortex probably requires the Cdk1 activation of both p21-activated kinases, which inhibit myosin recruitment, and of Rho kinase, which stimulates myosin recruitment to the cortex.


Assuntos
Proteína Quinase CDC2/metabolismo , Mitose , Miosina Tipo II/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacologia , Proteínas Fetais/metabolismo , Forminas , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia de Força Atômica , Mitose/efeitos dos fármacos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Pressão , Fatores de Tempo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
6.
Nat Commun ; 6: 8872, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26602832

RESUMO

Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.


Assuntos
Actomiosina , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Pressão Hidrostática , Mitose , Fuso Acromático/ultraestrutura , Animais , Proliferação de Células , Forma Celular , Tamanho Celular , Sobrevivência Celular , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Metáfase , Microscopia Confocal , Microscopia Eletrônica de Varredura , Pressão , Estresse Mecânico , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa