Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(2): e202200371, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36073234

RESUMO

A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains. Gas bubbles templated electropolymerization was next achieved by the addition of tiny amounts of water to the monomer solutions, without using surfactants. Within the investigated set of molecules, the nanostructural properties of the soft-templated films obtained from monomers bearing linear side chains could be fine-tuned by adjusting electrochemical parameters, leading to superhydrophobic surfaces.


Assuntos
Nanoestruturas , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Água , Fluorenos
2.
Angew Chem Int Ed Engl ; 61(48): e202212891, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36200274

RESUMO

Hole-transporting materials (HTMs) based on the 10H, 10'H-9,9'-spirobi [acridine] core (BSA50 and BSA51) were synthesized, and their electronic properties were explored. Experimental and theoretical studies show that the presence of rigid 3,6-dimethoxy-9H-carbazole moieties in BSA 50 brings about improved hole mobility and higher work function compared to bis(4-methoxyphenyl)amine units in BSA51, which increase interfacial hole transportation from perovskite to HTM. As a result, perovskite solar cells (PSCs) based on BSA50 boost power conversion efficiency (PCE) to 22.65 %, and a PSC module using BSA50 HTM exhibits a PCE of 21.35 % (6.5×7 cm) with a Voc of 8.761 V and FF of 79.1 %. The unencapsulated PSCs exhibit superior stability to devices employing spiro-OMeTAD, retaining nearly 90 % of their initial efficiency after 1000 h operation output. This work demonstrates the high potential of molecularly engineered spirobi[acridine] derivatives as HTMs as replacements for spiro-OMeTAD.

3.
Adv Funct Mater ; 30(28): 2000228, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684906

RESUMO

2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked charge-transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption. Modeling shows that electrostatic effects associated with fluorination, combined with the steric hindrance due to the bulky side groups, drive the formation of spatially dislocated charge pairs with reduced recombination rates. This work enriches and broadens the current knowledge of the photophysics of 2DP, which will hopefully guide synthesis efforts toward novel materials with improved functionalities.

4.
Chemistry ; 25(38): 9078-9087, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31184410

RESUMO

A small series of boron-dipyrromethene (BODIPY) dyes, characterized by the presence of multibranched fluorinated residues, were designed and synthesized. The dyes differ in both the position (para-perfluoroalkoxy-substituted phenyl ring or boron functionalization) and number of magnetically equivalent fluorine atoms (27 or 54 fluorine atoms per molecule). Photophysical and crystallographic characterization of the synthesized BODIPYs was carried out to evaluate the effect of the presence of highly fluorinated moieties on the optical and morphological properties of such compounds.

5.
Nano Lett ; 18(9): 5467-5474, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30134112

RESUMO

Hybrid perovskite solar cells have been capturing an enormous research interest in the energy sector due to their extraordinary performances and ease of fabrication. However, low device lifetime, mainly due to material and device degradation upon water exposure, challenges their near-future commercialization. Here, we synthesized a new fluorous organic cation used as organic spacer to form a low-dimensional perovskite (LDP) with an enhanced water-resistant character. The LDP is integrated with three-dimensional (3D) perovskite absorbers in the form of MA0.9FA0.1PbI3 (FA = NH2CH = NH2+, MA = CH3NH3+) and Cs0.1FA0.74MA0.13PbI2.48Br0.39. In both cases, a LDP layer self-assembles as a thin capping layer on the top of the 3D bulk, making the perovskite surface hydrophobic. Our easy and robust approach, validated for different perovskite compositions, limits the interface deterioration in perovskite solar cells yielding to >20% power conversion efficient solar cells with improved stability, especially pronounced in the first hours of functioning under environmental conditions. As a consequence, single and multijunction perovskite devices, such as tandem solar cells, can benefit from the use of the waterproof stabilization here demonstrated, a concept which can be further expanded in the perovskite optoelectronic industry beyond photovoltaics.

6.
Chemphyschem ; 18(17): 2381-2389, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28627744

RESUMO

With a power conversion efficiency (PCE) exceeding 22 %, perovskite solar cells (PSCs) have thrilled photovoltaic research. However, the interface behavior is still not understood and is a hot topic of research: different processes occur over a hierarchy of timescales, from femtoseconds to seconds, which makes perovskite interface physics intriguing. Herein, through femtosecond transient absorption spectroscopy with spectral coverage extending into the crucial IR region, the ultrafast interface-specific processes at standard and newly molecularly engineered perovskite interfaces in state-of-the-art PSCs are interrogated. Ultrafast interfacial charge injection occurs with a time constant of 100 fs, resulting in hot transfer from energetic charges and setting the timescale for the first step involved in the complex charge-transfer process. This is also true for 20 % efficient devices measured under real operation, for which the femtosecond injection is followed by a slower picosecond component. These findings provide compelling evidence for the femtosecond interfacial charge-injection step and demonstrate a robust method for the straightforward identification of interfacial non-equilibrium processes on the ultrafast timescale.

7.
Chemphyschem ; 17(20): 3229-3236, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27539817

RESUMO

In this study, we present the aqueous solution behavior of two luminescent lanthanide antenna complexes (Eu3+ ⊂1, Dy3+ ⊂9) with different ligand topologies in the presence of dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid). Macrocyclic (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, DO3A, 9) and acyclic (1,4,7-triazaheptane-1,1,7,7-tetraacetic acid, DTTA, 1) ligands have been selected to form a ratiometric pair in which Dy3+ ⊂9 acts as a reference and Eu3+ ⊂1 acts as a probe for the recognition of DPA. The pair of luminescent complexes in water reveals the capability to work as a DPA luminescent sensor. The change of emission intensity of Eu3+ indicates the occurrence of a new sensitization path for the lanthanide cation through excitation of DPA. NMR evidence implies the presence of free 1 and mass spectrometry shows the formation of emitting [EuDPA2 ]- as a result of a ligand exchange reaction.


Assuntos
Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Ácidos Picolínicos/química , Complexos de Coordenação/síntese química , Ligantes , Substâncias Luminescentes/síntese química , Medições Luminescentes , Estrutura Molecular
8.
Chemistry ; 20(16): 4598-607, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24668801

RESUMO

We describe herein the synthesis and photophysical characterization of new lanthanide complexes that consist of a (9,9-dimethylfluoren-2-yl)-2-oxoethyl or a (9,9'-spirobifluoren-2-yl)-2-oxoethyl unit as the antenna, covalently linked to a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) unit as the Ln(3+) (Gd(3+), Eu(3+), Sm(3+), Tb(3+), Dy(3+)) coordination site. We were able to translate the spectroscopic properties of the innovative bipartite ligands into the formation of highly luminescent europium complexes that exhibit efficient emission (ϕ(se)>0.1) upon sensitization in the near-visible region, that is, with an excitation wavelength above 350 nm. The luminescence of the Eu(3+) complexes is clearly detectable at concentrations as low as 10 pM. Furthermore, the structural organization of these bipartite ligands makes the complexes highly soluble in aqueous solutions and chemically stable over time.


Assuntos
Complexos de Coordenação/química , Fluorenos/química , Elementos da Série dos Lantanídeos/química , Compostos de Espiro/química , Complexos de Coordenação/síntese química , Európio/química , Compostos Heterocíclicos com 1 Anel/química , Ligantes , Medições Luminescentes
9.
Chemistry ; 19(3): 924-35, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23180631

RESUMO

An extensive spectroscopic analysis is presented of an elongated polycondensed dye with a donor-acceptor substitution. The charge-transfer (CT) state, polarized along the long molecular axis, is close in energy to a local excitation (LE) of the polycondensed system, roughly polarized along the short molecular axis, which makes this system particularly suitable to investigate the subtle LE/CT interplay. An essential-state model is presented that quantitatively reproduces absorption and fluorescence spectra, as well as fluorescence emission and excitation anisotropy spectra collected in solvents of different polarity and viscosity, which sets a sound basis for the understanding of how solvent polarity and solvent relaxation affect the nature of low-lying excitations. The markedly different fluorescence emission and excitation anisotropy spectra measured in glassy and liquid polar solvents unambiguously demonstrate the major role played by solvent relaxation in the definition of fluorescence properties of the dye.

10.
Inorg Chem ; 50(21): 10667-72, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21958310

RESUMO

Efficient intercalation of a luminescent Ir(III) complex exclusively made of polypyridine ligands in natural and synthetic biopolymers is reported for the first time. The emission of the complex is largely enhanced in the presence of [poly(dA-dT)(2)] and strongly quenched in the presence of [poly(dG-dC)(2)]. By comparing the emission decays in DNA and in synthetic polynucleotides, it is proposed that the emission quenching of the title compound by guanine residues in DNA is no longer effective over a distance of four dA-dT base pairs.


Assuntos
DNA/metabolismo , Substâncias Intercalantes/síntese química , Irídio/química , Sondas Moleculares/síntese química , Piridinas/química , Biopolímeros/química , Biopolímeros/metabolismo , Dicroísmo Circular , Substâncias Intercalantes/análise , Substâncias Intercalantes/metabolismo , Ligantes , Luminescência , Modelos Moleculares , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Poli dA-dT/química , Poli dA-dT/metabolismo , Polidesoxirribonucleotídeos/química , Polidesoxirribonucleotídeos/metabolismo , Polimerização , Polinucleotídeos/química , Polinucleotídeos/metabolismo
11.
Sci Rep ; 11(1): 20879, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686707

RESUMO

We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO2 and a Nb2O5 film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror-caused by limited adhesion between the silver and the dielectric pair-apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold.

12.
Nat Mater ; 8(1): 41-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19011616

RESUMO

One of the main goals of molecular electronics is to achieve electronic functions from devices consisting of tailored organic molecules connecting two metal electrodes. The fabrication of nanometre-scale spaced electrodes still results in expensive, and often scarcely reproducible, devices. On the other hand, the 'conductance' of long organic molecules--generally dominated by the tunnelling mechanism--is very poor. Here, we show that by incorporating a large number of metal centres into rigid molecular backbones we can obtain very long (up to 40 nm) and highly 'conductive' molecular wires. The metal-centre molecular wires are assembled in situ on metal surfaces via a sequential stepwise coordination of metal ions by terpyridine-based ligands. They form highly ordered molecular films of elevated mechanical robustness. The electrical properties, characterized by a junction based on Hg electrodes, indicate that the 'conductance' of these metal-centre molecular wires does not decrease significantly even for very long molecular wires, and depends on the nature of the incorporated redox centre. The outstanding electrical and mechanical characteristics of these easy-to-assemble molecular systems open the door to a new generation of molecular wires, able to bridge large-gap electrodes, and to form robust films for organic electronics.

13.
Sci Rep ; 10(1): 1176, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980734

RESUMO

SnO2 nanoparticles have been synthesized and used as electron transport material (ETM) in dye sensitized solar cells (DSSCs), featuring two peripherally substituted push-pull zinc phthalocyanines (ZnPcs) bearing electron donating diphenylamine substituents and carboxylic acid anchoring groups as light harvesters. These complexes were designed on the base of previous computational studies suggesting that the integration of secondary amines as donor groups in the structure of unsymmetrical ZnPcs might enhance photovoltaics performances of DSSCs. In the case of TiO2-based devices, this hypothesis has been recently questioned by experimental results. Herein we show that the same holds for SnO2, despite the optimal matching of the optoelectronic characteristics of the synthesized nanoparticles and diphenylamino-substituted ZnPcs, thus confirming that other parameters heavily affect the solar cells performances and should be carefully taken into account when designing materials for photovoltaic applications.

14.
Inorg Chem ; 48(17): 8578-92, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19653635

RESUMO

A series of new mixed-metal Ru(II)-Ir(III) trinuclear complexes have been prepared and characterized, together with their mononuclear parents and a series of closely related dinuclear and trinuclear homometallic Ru(II) and Ir(III) species, and their absorption spectra and luminescence properties (both at 77 K in rigid matrix and at room temperature in fluid solution) have been studied. The absorption spectra and luminescence properties of the Ru(II) species and subunits are dominated by metal-to-ligand charge-transfer (MLCT) transitions and excited states, whereas ligand centered (LC) transitions and excited states govern the spectroscopic and photophysical properties of most of the Ir(III) species here studied, with MLCT states playing an important role when cyclometalated Ir(III) subunits are present. Each metal-based subunit retains in the multinuclear arrays its own spectroscopic properties, but in the case of the mixed Ru-Ir species an efficient, additional decay channel is opened for the excited states involving the Ir-centered subunits, that is, photoinduced energy transfer to the lower-lying MLCT state(s) involving the Ru centers.

15.
Front Chem ; 7: 946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32064245

RESUMO

Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)2PbI4 and (Lf)2PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.

16.
Chem Commun (Camb) ; (28): 2911-3, 2007 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-17622428

RESUMO

Highly stable Eu(III) and Tb(III) complexes, emitting in the red and green visible regions, respectively, have been anchored onto a single SiO(2) transparent layer, yielding ca. 40 nm thick films; this allows high loading of tailored proportions of the red and green emitters within the films and results in highly uniform and easily colour-tunable luminescent layers.

17.
Sci Rep ; 7(1): 15675, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142212

RESUMO

Computational studies have suggested that the integration of secondary amine as donor groups in the structure of unsymmetrical zinc phthalocyanine (ZnPc) should have positive effects on photovoltaic performance, once the molecule is integrated as light harvester in dye sensitized solar cells (DSSCs). Aiming at obtaining experimental confirmation, we synthesized a peripherally substituted push-pull ZnPc bearing three electron donating diphenylamine substituents and a carboxylic acid anchoring group and integrated it as sensitizer in TiO2-based DSSCs. Detailed functional characterization of solar energy converting devices resulted in ruling out the original hypothesis. The causes of this discrepancy have been highlighted, leading to a better understanding of the conditions for an effective design of push-pull diarylamino substituted ZnPcs for DSSCs.

19.
Chem Commun (Camb) ; (42): 5266-8, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16244723

RESUMO

A new tetranuclear compound containing Ru(II) and Ir(III) polypyridine subunits exhibits two independent emissions at room temperature, as a consequence of weak interchromophoric coupling; in contrast, at 77 K energy transfer from Ir-based chromophores to the Ru-based ones is quantitative.

20.
Org Lett ; 6(3): 441-3, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14748613

RESUMO

[structure: see text] Poly(ethylene glycol)-supported TEMPO (PEG-TEMPO) has been prepared, and its catalytic activity in the chemoselective oxidation of alcohols with stoichiometric amounts of organic or inorganic oxidants has been investigated. The new metal-free catalyst exhibits high activity and is easily removed from the reaction mixture by filtration. Recycling experiments showed that PEG-TEMPO can be reused up to six times with no loss of catalytic activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa