Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mult Scler ; 30(7): 800-811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751221

RESUMO

BACKGROUND: Conventional magnetic resonance imaging (MRI) does not account for all disability in multiple sclerosis. OBJECTIVE: The objective was to assess the ability of graph metrics from diffusion-based structural connectomes to explain motor function beyond conventional MRI in early demyelinating clinically isolated syndrome (CIS). METHODS: A total of 73 people with CIS underwent conventional MRI, diffusion-weighted imaging and clinical assessment within 3 months from onset. A total of 28 healthy controls underwent MRI. Structural connectomes were produced. Differences between patients and controls were explored; clinical associations were assessed in patients. Linear regression models were compared to establish relevance of graph metrics over conventional MRI. RESULTS: Local efficiency (p = 0.045), clustering (p = 0.034) and transitivity (p = 0.036) were reduced in patients. Higher assortativity was associated with higher Expanded Disability Status Scale (EDSS) (ß = 74.9, p = 0.026) scores. Faster timed 25-foot walk (T25FW) was associated with higher assortativity (ß = 5.39, p = 0.026), local efficiency (ß = 27.1, p = 0.041) and clustering (ß = 36.1, p = 0.032) and lower small-worldness (ß = -3.27, p = 0.015). Adding graph metrics to conventional MRI improved EDSS (p = 0.045, ΔR2 = 4) and T25FW (p < 0.001, ΔR2 = 13.6) prediction. CONCLUSION: Graph metrics are relevant early in demyelination. They show differences between patients and controls and have relationships with clinical outcomes. Segregation (local efficiency, clustering, transitivity) was particularly relevant. Combining graph metrics with conventional MRI better explained disability.


Assuntos
Conectoma , Doenças Desmielinizantes , Humanos , Masculino , Feminino , Adulto , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/fisiopatologia , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Avaliação da Deficiência , Imageamento por Ressonância Magnética , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673803

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Esterol O-Aciltransferase , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Humanos , Masculino , Feminino , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína C1 de Niemann-Pick , Criança , Polimorfismo de Nucleotídeo Único , Animais , Camundongos , Fenótipo , Adolescente , Pré-Escolar , Genes Modificadores , Adulto , Alelos , Índice de Gravidade de Doença , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adulto Jovem
3.
Mol Genet Metab ; 140(3): 107656, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37517328

RESUMO

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive disorder due to pathological variants of NPC1. The NPC1 phenotype is characterized by progressive cerebellar ataxia and cognitive impairment. Although classically a childhood/adolescent disease, NPC1 is heterogeneous with respect to the age of onset of neurological signs and symptoms. While miglustat has shown to be clinically effective, there are currently no FDA approved drugs to treat NPC1. Identification and characterization of biomarkers may provide tools to facilitate therapeutic trials. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is a protein which is highly expressed by neurons and is a biomarker of neuronal damage. We thus measured cerebrospinal fluid (CSF) levels of UCHL1 in individuals with NPC1. METHODS: CSF levels of UCHL1 were measured using a Quanterix Neuroplex 4 assay in 94 individuals with NPC1 and 35 age-appropriate comparison samples. Cross-sectional and longitudinal CSF UCHL1 levels were then evaluated for correlation with phenotypic measures and treatment status. RESULTS: CSF UCHL1 levels were markedly elevated (3.3-fold) in individuals with NPC1 relative to comparison samples. The CSF UCHL1 levels showed statistically significant (adj p < 0.0001), moderate, positive correlations with both the 17- and 5-domain NPC Neurological Severity Scores and the Annual Severity Increment Scores. Miglustat treatment significantly decreased (adj p < 0.0001) CSF UCHL1 levels by 30% (95% CI 17-40%). CONCLUSIONS: CSF UCHL1 levels are elevated in NPC1, increase with increasing clinical severity and decrease in response to therapy with miglustat. Based on these data, UCHL1 may be a useful biomarker to monitor disease progression and therapeutic response in individuals with NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Adolescente , Criança , Humanos , Biomarcadores/metabolismo , Estudos Transversais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Fenótipo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/uso terapêutico
4.
Brain ; 144(5): 1409-1421, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33903905

RESUMO

In early multiple sclerosis, a clearer understanding of normal-brain tissue microstructural and metabolic abnormalities will provide valuable insights into its pathophysiology. We used multi-parametric quantitative MRI to detect alterations in brain tissues of patients with their first demyelinating episode. We acquired neurite orientation dispersion and density imaging [to investigate morphology of neurites (dendrites and axons)] and 23Na MRI (to estimate total sodium concentration, a reflection of underlying changes in metabolic function). In this cross-sectional study, we enrolled 42 patients diagnosed with clinically isolated syndrome or multiple sclerosis within 3 months of their first demyelinating event and 16 healthy controls. Physical and cognitive scales were assessed. At 3 T, we acquired brain and spinal cord structural scans, and neurite orientation dispersion and density imaging. Thirty-two patients and 13 healthy controls also underwent brain 23Na MRI. We measured neurite density and orientation dispersion indices and total sodium concentration in brain normal-appearing white matter, white matter lesions, and grey matter. We used linear regression models (adjusting for brain parenchymal fraction and lesion load) and Spearman correlation tests (significance level P ≤ 0.01). Patients showed higher orientation dispersion index in normal-appearing white matter, including the corpus callosum, where they also showed lower neurite density index and higher total sodium concentration, compared with healthy controls. In grey matter, compared with healthy controls, patients demonstrated: lower orientation dispersion index in frontal, parietal and temporal cortices; lower neurite density index in parietal, temporal and occipital cortices; and higher total sodium concentration in limbic and frontal cortices. Brain volumes did not differ between patients and controls. In patients, higher orientation dispersion index in corpus callosum was associated with worse performance on timed walk test (P = 0.009, B = 0.01, 99% confidence interval = 0.0001 to 0.02), independent of brain and lesion volumes. Higher total sodium concentration in left frontal middle gyrus was associated with higher disability on Expanded Disability Status Scale (rs = 0.5, P = 0.005). Increased axonal dispersion was found in normal-appearing white matter, particularly corpus callosum, where there was also axonal degeneration and total sodium accumulation. The association between increased axonal dispersion in the corpus callosum and worse walking performance implies that morphological and metabolic alterations in this structure could mechanistically contribute to disability in multiple sclerosis. As brain volumes were neither altered nor related to disability in patients, our findings suggest that these two advanced MRI techniques are more sensitive at detecting clinically relevant pathology in early multiple sclerosis.


Assuntos
Encéfalo/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Encéfalo/metabolismo , Encéfalo/patologia , Estudos Transversais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia
5.
J Neuroophthalmol ; 42(1): e22-e31, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561401

RESUMO

BACKGROUND: In this study, we hypothesized that clinically isolated syndrome-optic neuritis patients may have disturbances in neuropsychological functions related to visual processes. METHODS: Forty-two patients with optic neuritis within 3 months from onset and 13 healthy controls were assessed at baseline and 6 months with MRI (brain volumes, lesion load, and optic radiation lesion volume) and optical coherence tomography (OCT) (peripapillary retinal nerve fiber layer [RNFL], ganglion cell and inner plexiform layers [GCIPLs], and inner nuclear layer). Patients underwent the brief cognitive assessment for multiple sclerosis, high-contrast and low-contrast letter acuity, and color vision. RESULTS: At baseline, patients had impaired visual function, had GCIPL thinning in both eyes, and performed below the normative average in the visual-related tests: Symbol Digit Modalities Test and Brief Visuospatial Memory Test-Revised (BVMT-R). Over time, improvement in visual function in the affected eye was predicted by baseline GCIPL (P = 0.015), RNFL decreased, and the BVMT-R improved (P = 0.001). Improvement in BVMT-R was associated with improvement in the high-contrast letter acuity of the affected eye (P = 0.03), independently of OCT and MRI metrics. CONCLUSION: Cognitive testing, assessed binocularly, of visuospatial processing is affected after unilateral optic neuritis and improves over time with visual recovery. This is not related to structural markers of the visual or central nervous system.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Neurite Óptica , Cognição , Doenças Desmielinizantes/complicações , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Fibras Nervosas/patologia , Neurite Óptica/complicações , Neurite Óptica/diagnóstico , Tomografia de Coerência Óptica/métodos
6.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563467

RESUMO

Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1-/- mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5-/-:Npc1-/- mice were smaller than Mgat5+/+:Npc1-/- mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5-/-:Npc1-/- mice compared to Mgat5+/+:Npc1-/- mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5-/-:Npc1-/- mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.


Assuntos
N-Acetilglucosaminiltransferases , Doença de Niemann-Pick Tipo C , Animais , Asparagina/metabolismo , Asparagina/farmacologia , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , N-Acetilglucosaminiltransferases/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia
7.
Genet Med ; 23(10): 1864-1872, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34050321

RESUMO

PURPOSE: Creatine transporter deficiency (CTD) is a rare X-linked disorder of creatine transport caused by pathogenic variants in SLC6A8 (Xq28). CTD features include developmental delay, seizures, and autism spectrum disorder. This study was designed to investigate CTD cardiac phenotype and sudden death risk. METHODS: We performed a cross-sectional analysis of CTD males between 2017 and 2020. Subjects underwent evaluation with electrocardiogram (ECG), echocardiography, and ambulatory ECG with comparable analysis in creatine transporter deficient mice (Slc6a8-/y) using ECG, echocardiography, exercise testing, and indirect calorimetry. RESULTS: Eighteen subjects with CTD (18 males, age 7.4 [3.8] years) were evaluated: seven subjects (39%) had QTc ≥ 470 milliseconds: 510.3 ± 29.0 vs. 448.3 ± 15.9, P < 0.0001. The QTc ≥ 470 milliseconds cohort had increased left ventricular internal dimension (diastole) ([LVIDd] Z-score: 0.22 ± 0.74, n = 7 vs. -0.93 ± 1.0, n = 11, P = 0.0059), and diminished left ventricular posterior wall dimension (diastole) ([LVPWDd, in mm]: 5.0 ± 0.6, n = 7 vs. 5.7 ± 0.8, n = 11, P = 0.0183), when compared to subjects with normal or borderline QTc prolongation. Similar ECG and echocardiographic abnormalities were seen in Slc6a8-/y mice. Additionally, Slc6a8-/y mice had diminished survival (65%). CONCLUSION: Prolonged QTc and abnormal echocardiographic parameters consistent with developing cardiomyopathy are seen in some male subjects with CTD. Slc6a8-/y mice recapitulated these cardiac abnormalities. Male CTD subjects may be at increased risk for cardiac dysfunction and sudden death.


Assuntos
Transtorno do Espectro Autista , Creatina , Animais , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Estudos Transversais , Morte Súbita , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X , Camundongos , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência
8.
Mol Genet Metab ; 134(4): 330-336, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802899

RESUMO

Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a ß-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.


Assuntos
Ceftriaxona/uso terapêutico , Ácido Glutâmico/toxicidade , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Riluzol/uso terapêutico , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick/fisiologia
9.
Hum Mol Genet ; 27(12): 2076-2089, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29617956

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a neurodegenerative disorder with limited treatment options. NPC1 is associated with neuroinflammation; however, attempts to therapeutically target neuroinflammation in NPC1 have had mixed success. We show here that NPC1 neuroinflammation is characterized by an atypical microglia activation phenotype. Specifically, Npc1-/- microglia demonstrated altered morphology, reduced levels of lineage markers and a shift toward glycolytic metabolism. Treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a drug currently being studied in a phase 2b/3 clinical trial, reversed all microglia-associated defects in Npc1-/- animals. In addition, impairing microglia mediated neuroinflammation by genetic deletion of IRF8 led to decreased symptoms and increased lifespan. We identified CD22 as a marker of dysregulated microglia in Npc1 mutant mice and subsequently demonstrated that elevated cerebrospinal fluid levels of CD22 in NPC1 patients responds to HPßCD administration. Collectively, these data provide the first in-depth analysis of microglia function in NPC1 and suggest possible new therapeutic approaches.


Assuntos
Inflamação/tratamento farmacológico , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Adolescente , Adulto , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Inflamação/genética , Inflamação/patologia , Fatores Reguladores de Interferon , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/líquido cefalorraquidiano
10.
Mol Genet Metab ; 131(3): 364-366, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33129690

RESUMO

Niemann-Pick type C1 (NPC1) is a rare neurodegenerative disease. In NPC1 mouse cerebella, the antibacterial enzyme, lysozyme (Lyz2), is significantly increased in multiple cell types. Due to its possible role in toxic fibril deposition, we confirmed Lyz2 overexpression in culture in different control and NPC1 cell types including human NPC1 fibroblasts. Lyz2 expression is induced by Toll-like receptors potentially in response to lipid storage but does not play a functional role in NPC disease pathology.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Muramidase/genética , Doença de Niemann-Pick Tipo C/genética , Receptores Toll-Like/genética , Animais , Astrócitos/metabolismo , Fibroblastos , Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologia
11.
J Magn Reson Imaging ; 52(5): 1429-1438, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32476227

RESUMO

BACKGROUND: Associations between brain total sodium concentration, disability, and disease progression have recently been reported in multiple sclerosis. However, such measures in spinal cord have not been reported. PURPOSE: To measure total sodium concentration (TSC) alterations in the cervical spinal cord of people with relapsing-remitting multiple sclerosis (RRMS) and a control cohort using sodium MR spectroscopy (MRS). STUDY TYPE: Retrospective cohort. SUBJECTS: Nineteen people with RRMS and 21 healthy controls. FIELD STRENGTH/SEQUENCE: 3 T sodium MRS, diffusion tensor imaging, and 3D gradient echo. ASSESSMENT: Quantification of total sodium concentration in the cervical cord using a reference phantom. Measures of spinal cord cross-sectional area, fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity from 1 H MRI. Clinical assessments of 9-Hole Peg Test, 25-Foot Timed walk test, Paced Auditory Serial Addition Test with 3-second intervals, grip strength, vibration sensitivity, and posturography were performed on the RRMS cohort as well as reporting lesions in the C2/3 area. STATISTICAL TESTS: Multiple linear regression models were run between sodium and clinical scores, cross-sectional area, and diffusion metrics to establish any correlations. RESULTS: A significant increase in spinal cord total sodium concentration was found in people with RRMS relative to healthy controls (57.6 ± 18 mmol and 38.0 ± 8.6 mmol, respectively, P < 0.001). Increased TSC correlated with reduced fractional anisotropy (P = 0.034) and clinically with decreased mediolateral stability assessed with posturography (P = 0.045). DATA CONCLUSION: Total sodium concentration in the cervical spinal cord is elevated in RRMS. This alteration is associated with reduced fractional anisotropy, which may be due to changes in tissue microstructure and, hence, in the integrity of spinal cord tissue. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Anisotropia , Imagem de Tensor de Difusão , Humanos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Estudos Retrospectivos , Sódio , Medula Espinal/diagnóstico por imagem
12.
Mult Scler ; 26(7): 774-785, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31074686

RESUMO

BACKGROUND: The potential of multi-shell diffusion imaging to produce accurate brain connectivity metrics able to unravel key pathophysiological processes in multiple sclerosis (MS) has scarcely been investigated. OBJECTIVE: To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell imaging-derived connectivity metrics can differentiate patients from controls, correlate with clinical measures, and perform better than metrics obtained with conventional single-shell protocols. METHODS: Nineteen patients within 3 months from the CIS and 12 healthy controls underwent anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were cognitively assessed. Voxel-wise fibre orientation distribution functions were estimated and used to obtain network metrics. These were also calculated using a conventional single-shell diffusion protocol. Through linear regression, we obtained effect sizes and standardised regression coefficients. RESULTS: Patients had lower mean nodal strength (p = 0.003) and greater network modularity than controls (p = 0.045). Greater modularity was associated with worse cognitive performance in patients, even after accounting for lesion load (p = 0.002). Multi-shell-derived metrics outperformed single-shell-derived ones. CONCLUSION: Connectivity-based nodal strength and network modularity are abnormal in the CIS. Furthermore, the increased network modularity observed in patients, indicating microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell imaging can detect potentially relevant network changes in early MS.


Assuntos
Disfunção Cognitiva/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/patologia , Rede Nervosa/patologia , Estudos Retrospectivos , Substância Branca/patologia
13.
Mult Scler ; 26(13): 1647-1657, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682198

RESUMO

BACKGROUND: Multiple sclerosis (MS) affects both brain and spinal cord. However, studies of the neuraxis with advanced magnetic resonance imaging (MRI) are rare because of long acquisition times. We investigated neurodegeneration in MS brain and cervical spinal cord using neurite orientation dispersion and density imaging (NODDI). OBJECTIVE: The aim of this study was to investigate possible alterations, and their clinical relevance, in neurite morphology along the brain and cervical spinal cord of relapsing-remitting MS (RRMS) patients. METHODS: In total, 28 RRMS patients and 20 healthy controls (HCs) underwent brain and spinal cord NODDI at 3T. Physical and cognitive disability was assessed. Individual maps of orientation dispersion index (ODI) and neurite density index (NDI) in brain and spinal cord were obtained. We examined differences in NODDI measures between groups and the relationships between NODDI metrics and clinical scores using linear regression models adjusted for age, sex and brain tissue volumes or cord cross-sectional area (CSA). RESULTS: Patients showed lower NDI in the brain normal-appearing white matter (WM) and spinal cord WM than HCs. In patients, a lower NDI in the spinal cord WM was associated with higher disability. CONCLUSION: Reduced neurite density occurs in the neuraxis but, especially when affecting the spinal cord, it may represent a mechanism of disability in MS.


Assuntos
Medula Cervical , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Humanos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Neuritos , Medula Espinal
14.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244519

RESUMO

Niemann-Pick disease, type C1, is a cholesterol storage disease where unesterified cholesterol accumulates intracellularly. In the cerebellum this causes neurodegeneration of the Purkinje neurons that die in an anterior-to-posterior and time-dependent manner. This results in cerebellar ataxia as one of the major outcomes of the disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a significant role in the regulation of serum cholesterol levels by modulating LDL receptor levels on peripheral tissues. In the central nervous system, PCSK9 may have a similar effect on the closely related VLDL and ApoE2 receptors to regulate brain cholesterol. In addition, regulation of VLDLR and ApoER2 by PCSK9 may contribute to neuronal apoptotic pathways through Reelin, the primary ligand of VLDLR and ApoER2. Defects in reelin signaling results in cerebellar dysfunction leading to ataxia as seen in the Reeler mouse. Our recent findings that Pcsk9 is expressed ~8-fold higher in the anterior lobules of the cerebellum compared to the posterior lobule X, which is resistant to neurodegeneration, prompted us to ask whether PCSK9 could play a role in NPC1 disease progression. We addressed this question genetically, by characterizing NPC1 disease in the presence or absence of PCSK9. Analysis of double mutant Pcsk9-/-/Npc1-/- mice by disease severity scoring, motor assessments, lifespan, and cerebellar Purkinje cell staining, showed no obvious difference in NPC1 disease progression with that of Npc1-/- mice. This suggests that PCSK9 does not play an apparent role in NPC1 disease progression.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Animais , Apolipoproteína E2 , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doenças Neurodegenerativas , Proteína C1 de Niemann-Pick , Células de Purkinje/metabolismo , Receptores de LDL/metabolismo , Proteína Reelina
15.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731618

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by endolysosomal storage of unesterified cholesterol and decreased cellular cholesterol bioavailability. A cardinal symptom of NPC1 is cerebellar ataxia due to Purkinje neuron loss. To gain an understanding of the cerebellar neuropathology we obtained single cell transcriptome data from control (Npc1+/+) and both three-week-old presymptomatic and seven-week-old symptomatic mutant (Npc1-/-) mice. In seven-week-old Npc1-/- mice, differential expression data was obtained for neuronal, glial, vascular, and myeloid cells. As anticipated, we observed microglial activation and increased expression of innate immunity genes. We also observed increased expression of innate immunity genes by other cerebellar cell types, including Purkinje neurons. Whereas neuroinflammation mediated by microglia may have both neuroprotective and neurotoxic components, the contribution of increased expression of these genes by non-immune cells to NPC1 pathology is not known. It is possible that dysregulated expression of innate immunity genes by non-immune cells is neurotoxic. We did not anticipate a general lack of transcriptomic changes in cells other than microglia from presymptomatic three-week-old Npc1-/- mice. This observation suggests that microglia activation precedes neuronal dysfunction. The data presented in this paper will be useful for generating testable hypotheses related to disease progression and Purkinje neurons loss as well as providing insight into potential novel therapeutic interventions.


Assuntos
Cerebelo , Perfilação da Expressão Gênica , Microglia , Doença de Niemann-Pick Tipo C , Células de Purkinje , Análise de Célula Única , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia
16.
J Neuroinflammation ; 16(1): 276, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883529

RESUMO

BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.


Assuntos
Microglia/metabolismo , Mucolipidoses/genética , Mucolipidoses/patologia , Transcriptoma , Animais , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microglia/patologia , Mucolipidoses/metabolismo
17.
Ann Neurol ; 83(2): 210-222, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331092

RESUMO

OBJECTIVE: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. METHODS: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. RESULTS: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). INTERPRETATION: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210-222.


Assuntos
Encéfalo/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Adulto , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Avaliação da Deficiência , Progressão da Doença , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Estudos Retrospectivos
18.
Mult Scler ; 25(3): 352-360, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29327668

RESUMO

BACKGROUND: Compared to 1.5 T, 3 T magnetic resonance imaging (MRI) increases signal-to-noise ratio leading to improved image quality. However, its clinical relevance in clinically isolated syndrome suggestive of multiple sclerosis remains uncertain. OBJECTIVES: The purpose of this study was to investigate how 3 T MRI affects the agreement between raters on lesion detection and diagnosis. METHODS: We selected 30 patients and 10 healthy controls from our ongoing prospective multicentre cohort. All subjects received baseline 1.5 and 3 T brain and spinal cord MRI. Patients also received follow-up brain MRI at 3-6 months. Four experienced neuroradiologists and four less-experienced raters scored the number of lesions per anatomical region and determined dissemination in space and time (McDonald 2010). RESULTS: In controls, the mean number of lesions per rater was 0.16 at 1.5 T and 0.38 at 3 T ( p = 0.005). For patients, this was 4.18 and 4.40, respectively ( p = 0.657). Inter-rater agreement on involvement per anatomical region and dissemination in space and time was moderate to good for both field strengths. 3 T slightly improved agreement between experienced raters, but slightly decreased agreement between less-experienced raters. CONCLUSION: Overall, the interobserver agreement was moderate to good. 3 T appears to improve the reading for experienced readers, underlining the benefit of additional training.


Assuntos
Competência Clínica/normas , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Adulto , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neurologistas , Radiologistas
19.
Brain ; 141(6): 1665-1677, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741648

RESUMO

See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.


Assuntos
Encéfalo/patologia , Progressão da Doença , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Adulto , Atrofia/etiologia , Atrofia/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos Retrospectivos
20.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906248

RESUMO

: Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function. However, degeneration of Purkinje neurons is not uniform. They are typically lost in an anterior-to-posterior gradient with neurons in lobule X being resistant to neurodegeneration. To gain mechanistic insight into factors that protect or potentiate Purkinje neuron loss, we compared RNA expression in cerebellar lobules III, VI, and X from control and mutant mice. An unexpected finding was that the gene expression differences between lobules III/VI and X were more pronounced than those observed between mutant and control mice. Functional analysis of genes with anterior to posterior gene expression differences revealed an enrichment of genes related to neuronal cell survival within the posterior cerebellum. This finding is consistent with the observation, in multiple diseases, that posterior Purkinje neurons are, in general, resistant to neurodegeneration. To our knowledge, this is the first study to evaluate anterior to posterior transcriptome-wide changes in gene expression in the cerebellum. Our data can be used to not only explore potential pathological mechanisms in NPC1, but also to further understand cerebellar biology.


Assuntos
Cerebelo , Regulação da Expressão Gênica , Doença de Niemann-Pick Tipo C/metabolismo , Células de Purkinje , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa