Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Syst Biol ; 8: 582, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22580890

RESUMO

The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1-Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1-Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1-Bub2 and Tem1 localization at the SPBs. Based on the measured SPB-bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.


Assuntos
Regulação Fúngica da Expressão Gênica , Modelos Teóricos , Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Biologia de Sistemas/métodos , Divisão Celular Assimétrica , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Simulação por Computador , Citoplasma/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Microscopia de Fluorescência , Mitose , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/genética
2.
Exp Cell Res ; 318(12): 1421-7, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22510435

RESUMO

The asymmetrically dividing budding yeast relies upon the alignment of the mitotic spindle along the mother to daughter cell polarity axis for the fidelity of chromosome segregation during mitosis. In the case of spindle misalignment, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis through the inhibition of the mitotic exit network (MEN). MEN is a signal transduction pathway that mediates mitotic exit through fully activation of the Cdk-counteracting phosphatase Cdc14. In this mini-review, we briefly describe the mechanisms leading to mitotic exit in budding yeast cells focusing on the control of MEN by the SPOC. In addition, we summarize the recent advances in the molecular understanding of SPOC regulation and discuss whether similar checkpoints may exist in higher eukaryotic cells that undergo asymmetric divisions.


Assuntos
Segregação de Cromossomos/genética , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Saccharomycetales/genética , Fuso Acromático/metabolismo , Animais , Segregação de Cromossomos/fisiologia , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Masculino , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/fisiologia , Fuso Acromático/genética , Fuso Acromático/fisiologia
3.
Open Biol ; 13(9): 230125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37751887

RESUMO

Coordination of mitotic exit with chromosome segregation is key for successful mitosis. Mitotic exit in budding yeast is executed by the mitotic exit network (MEN), which is negatively regulated by the spindle position checkpoint (SPOC). SPOC kinase Kin4 is crucial for SPOC activation in response to spindle positioning defects. Here, we report that the lysosomal signalling lipid phosphatidylinositol-3,5-bisphosphate (PI3,5P2) has an unanticipated role in the timely execution of mitotic exit. We show that the lack of PI3,5P2 causes a delay in mitotic exit, whereas elevated levels of PI3,5P2 accelerates mitotic exit in mitotic exit defective cells. Our data indicate that PI3,5P2 promotes mitotic exit in part through impairment of Kin4. This process is largely dependent on the known PI3,5P2 effector protein Atg18. Our work thus uncovers a novel link between PI3,5P2 and mitotic exit.


Assuntos
Mitose , Transdução de Sinais , Humanos , Segregação de Cromossomos , Pontos de Checagem da Fase M do Ciclo Celular , Lipídeos
4.
Mol Biol Cell ; 34(2): ar11, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542480

RESUMO

Faithful chromosome segregation in budding yeast requires correct positioning of the mitotic spindle along the mother to daughter cell polarity axis. When the anaphase spindle is not correctly positioned, a surveillance mechanism, named as the spindle position checkpoint (SPOC), prevents the progression out of mitosis until correct spindle positioning is achieved. How SPOC works on a molecular level is not well understood. Here we performed a genome-wide genetic screen to search for components required for SPOC. We identified the SWR1 chromatin-remodeling complex (SWR1-C) among several novel factors that are essential for SPOC integrity. Cells lacking SWR1-C were able to activate SPOC upon spindle misorientation but underwent mitotic slippage upon prolonged SPOC arrest. This mitotic slippage required the Cdc14-early anaphase release pathway and other factors including the SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase complex, proteasome components and the mitotic cyclin-dependent kinase inhibitor Sic1. Together, our data establish a novel link between SWR1-C chromatin remodeling and robust checkpoint arrest in late anaphase.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Mitose , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Adenosina Trifosfatases/metabolismo
5.
Elife ; 102021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633288

RESUMO

Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5, and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.


Assuntos
Polaridade Celular , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Mitose , Proteína Fosfatase 1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/fisiologia , Proteína Fosfatase 1/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Methods Mol Biol ; 1505: 167-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27826864

RESUMO

Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study in vivo binding and diffusion dynamics of fluorescently labeled proteins. In this chapter, we describe how to determine spindle pole body (SPB) binding dynamics of mitotic exit network (MEN) and spindle position checkpoint (SPOC) proteins using FRAP microscopy. Procedures presented here include the growth of the yeast cultures, sample preparation, image acquisition and analysis.


Assuntos
Proteínas de Ciclo Celular/análise , Recuperação de Fluorescência Após Fotodegradação/métodos , Microscopia de Fluorescência/métodos , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/citologia , Corpos Polares do Fuso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Imagem Óptica/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/ultraestrutura
7.
Nat Commun ; 8: 14129, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117323

RESUMO

The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment.


Assuntos
Genes Fúngicos/fisiologia , Mitose/fisiologia , Transdução de Sinais/fisiologia , Fuso Acromático/fisiologia , Segregação de Cromossomos/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Biol Cell ; 25(14): 2143-51, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24850890

RESUMO

In addition to their well-known role in microtubule organization, centrosomes function as signaling platforms and regulate cell cycle events. An important example of such a function is the spindle position checkpoint (SPOC) of budding yeast. SPOC is a surveillance mechanism that ensures alignment of the mitotic spindle along the cell polarity axis. Upon spindle misalignment, phosphorylation of the SPOC component Bfa1 by Kin4 kinase engages the SPOC by changing the centrosome localization of Bfa1 from asymmetric (one centrosome) to symmetric (both centrosomes). Here we show that, unexpectedly, Kin4 alone is unable to break Bfa1 asymmetry at yeast centrosomes. Instead, phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1-centrosome association and promotes symmetric Bfa1 localization. Consistently, BMH1-null cells are SPOC deficient. Our work thus identifies Bmh1 as a new SPOC component and refines the molecular mechanism that breaks Bfa1 centrosome asymmetry upon SPOC activation.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas 14-3-3/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo
9.
J Cell Biol ; 190(6): 975-89, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20855503

RESUMO

Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck-associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.


Assuntos
Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Fuso Acromático/enzimologia , Ativação Enzimática , Deleção de Genes , Metáfase , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química
10.
Dev Cell ; 16(1): 146-56, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19154725

RESUMO

In many polarized cells, the accuracy of chromosome segregation depends on the correct positioning of the mitotic spindle. In budding yeast, the spindle positioning checkpoint (SPOC) delays mitotic exit when the anaphase spindle fails to extend toward the mother-daughter axis. However it remains to be established how spindle orientation is translated to SPOC components at the yeast spindle pole bodies (SPB). Here, we used photobleaching techniques to show that the dynamics with which Bub2-Bfa1 turned over at SPBs significantly increased upon SPOC activation. A version of Bfa1 that was stably associated with SPBs rendered the cells SPOC deficient without affecting other Bub2-Bfa1 functions, demonstrating the functional importance of regulating the dynamics of Bfa1 SPB association. In addition, we established that the SPOC kinase Kin4 is the major regulator of Bfa1 residence time at SPBs. We suggest that upon SPOC activation Bfa1-Bub2 spreads throughout the cytoplasm, thereby inhibiting mitotic exit.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Microtúbulos/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa