Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
AJNR Am J Neuroradiol ; 43(4): 547-553, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332023

RESUMO

BACKGROUND AND PURPOSE: Many small, regularly shaped cerebral aneurysms rupture; however, they usually receive a low score based on current risk-assessment methods. Our goal was to identify patient and aneurysm characteristics associated with rupture of small, regularly shaped aneurysms and to develop and validate predictive models of rupture in this aneurysm subpopulation. MATERIALS AND METHODS: Cross-sectional data from 1079 aneurysms smaller than 7 mm with regular shapes (without blebs) were used to train predictive models for aneurysm rupture using machine learning methods. These models were based on the patient population, aneurysm location, and hemodynamic and geometric characteristics derived from image-based computational fluid dynamics models. An independent data set with 102 small, regularly shaped aneurysms was used for validation. RESULTS: Adverse hemodynamic environments characterized by strong, concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns were associated with rupture in small, regularly shaped aneurysms. Additionally, ruptured aneurysms were larger and more elongated than unruptured aneurysms in this subset. A total of 5 hemodynamic and 6 geometric parameters along with aneurysm location, multiplicity, and morphology, were used as predictive variables. The best machine learning rupture prediction-model achieved a good performance with an area under the curve of 0.84 on the external validation data set. CONCLUSIONS: This study demonstrated the potential of using predictive machine learning models based on aneurysm-specific hemodynamic, geometric, and anatomic characteristics for identifying small, regularly shaped aneurysms prone to rupture.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Aneurisma Roto/diagnóstico por imagem , Angiografia Cerebral , Estudos Transversais , Hemodinâmica , Humanos , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Fatores de Risco
2.
AJNR Am J Neuroradiol ; 42(11): 1973-1978, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34446459

RESUMO

BACKGROUND AND PURPOSE: Identifying and predicting which aneurysms are likely to quickly occlude and which ones are likely to remain open following treatment with flow-diverting devices is important to develop optimal patient management strategies. The purpose of this study was to evaluate predictions based on computational fluid dynamics models using the elastase rabbit aneurysm model. MATERIALS AND METHODS: A series of 13 aneurysms created in rabbits were treated with flow diverters, and outcomes were angiographically assessed at 8 weeks' follow-up. Computational fluid dynamics models were constructed from pretreatment 3D rotational angiograms and Doppler ultrasound flow velocity measurements. Postimplantation mean aneurysm inflow rate and flow velocity were used to prospectively predict aneurysm occlusion blinded to the actual outcomes. Specifically, if both variables were below their corresponding thresholds, fast occlusion was predicted, while if one of them was above the threshold, slow or incomplete occlusion was predicted. RESULTS: Of the 13 aneurysms included, 8 were incompletely occluded 8 weeks after treatment, and 5 were completely occluded. A total of 10 computational fluid dynamics-based predictions agreed with the angiographic outcome, reaching 77% accuracy, 80% sensitivity, and 75% specificity. Posttreatment mean velocity alone was able to achieve the same predictive power as the combination of inflow rate and velocity. CONCLUSIONS: Subject-specific computational fluid dynamics models of the hemodynamic conditions created immediately after implantation of flow-diverting devices in experimental aneurysms created in rabbits are capable of prospectively predicting, with a reasonable accuracy, which aneurysms will completely occlude and which ones will remain incompletely occluded.


Assuntos
Aneurisma Intracraniano , Animais , Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Elastase Pancreática , Prognóstico , Coelhos , Resultado do Tratamento
3.
AJNR Am J Neuroradiol ; 42(3): 464-470, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33361379

RESUMO

BACKGROUND AND PURPOSE: Aneurysm wall enhancement has been proposed as a biomarker for inflammation and instability. However, the mechanisms of aneurysm wall enhancement remain unclear. We used 7T MR imaging to determine the effect of flow in different regions of the wall. MATERIALS AND METHODS: Twenty-three intracranial aneurysms imaged with 7T MR imaging and 3D angiography were studied with computational fluid dynamics. Local flow conditions were compared between aneurysm wall enhancement and nonenhanced regions. Aneurysm wall enhancement regions were subdivided according to their location on the aneurysm and relative to the inflow and were further compared. RESULTS: On average, wall shear stress was lower in enhanced than in nonenhanced regions (P = .05). Aneurysm wall enhancement regions at the neck had higher wall shear stress gradients (P = .05) with lower oscillations (P = .05) than nonenhanced regions. In contrast, aneurysm wall enhancement regions at the aneurysm body had lower wall shear stress (P = .01) and wall shear stress gradients (P = .008) than nonenhanced regions. Aneurysm wall enhancement regions far from the inflow had lower wall shear stress (P = .006) than nonenhanced regions, while aneurysm wall enhancement regions close to the inflow tended to have higher wall shear stress than the nonenhanced regions, but this association was not significant. CONCLUSIONS: Aneurysm wall enhancement regions tend to have lower wall shear stress than nonenhanced regions of the same aneurysm. Moreover, the association between flow conditions and aneurysm wall enhancement seems to depend on the location of the region on the aneurysm sac. Regions at the neck and close to the inflow tend to be exposed to higher wall shear stress and wall shear stress gradients. Regions at the body, dome, or far from the inflow tend to be exposed to uniformly low wall shear stress and have more aneurysm wall enhancement.


Assuntos
Hemodinâmica/fisiologia , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/patologia , Imageamento por Ressonância Magnética/métodos , Angiografia Cerebral/métodos , Humanos , Masculino , Estresse Mecânico
4.
AJNR Am J Neuroradiol ; 40(9): 1511-1516, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395663

RESUMO

BACKGROUND AND PURPOSE: Intrasaccular flow diversion offers a promising treatment option for complex bifurcation aneurysms. The purpose of this study was to compare the flow conditions between successfully occluded and incompletely occluded aneurysms treated with intrasaccular devices. MATERIALS AND METHODS: The hemodynamics in 18 completely occluded aneurysms after treatment with intrasaccular devices was compared against 18 that were incompletely occluded at follow-up. Hemodynamic and geometric parameters were obtained from computational fluid dynamics models constructed from 3D angiographies. Models of the intrasaccular devices were created and interactively deployed within the vascular models using posttreatment angiography images for guidance. Hemodynamic and geometric variables were compared using the Mann-Whitney test and univariate logistic regression analysis. RESULTS: Incomplete occlusion was associated with large posttreatment mean aneurysm inflows (P = .02) and small reductions in the mean inflow rate (P = .01) and inflow concentration index (P = .03). Incompletely occluded aneurysms were larger (P = .002) and had wider necks (P = .004) than completely occluded aneurysms and tended to have more complex flow patterns, though this trend was not significant after adjusting for multiple testing. CONCLUSIONS: The outcome of cerebral aneurysm treatment with intrasaccular flow diverters is associated with flow conditions created immediately after device implantation. Flow conditions unfavorable for immediate and complete occlusion seem to be created by improper positioning or orientation of the device. Complete occlusion is more difficult to achieve in larger aneurysms, aneurysms with wider necks, and aneurysms with stronger and more complex flows.


Assuntos
Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Procedimentos Neurocirúrgicos , Procedimentos Cirúrgicos Vasculares , Idoso , Prótese Vascular , Feminino , Hemodinâmica , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos , Stents , Resultado do Tratamento , Procedimentos Cirúrgicos Vasculares/instrumentação , Procedimentos Cirúrgicos Vasculares/métodos
5.
AJNR Am J Neuroradiol ; 40(12): 2102-2110, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31780462

RESUMO

BACKGROUND AND PURPOSE: Aneurysm growth has been related to higher rupture risk. A better understanding of the characteristics related to growth may assist in the treatment decisions of unruptured intracranial aneurysms. This study aimed to identify morphologic and hemodynamic characteristics associated with aneurysm growth and to determine whether these characteristics deviate further from those of stable aneurysms after growth. MATERIALS AND METHODS: We included 81 stable and 56 growing aneurysms. 3D vascular models were segmented on CTA, MRA, or 3D rotational angiographic images. With these models, we performed computational fluid dynamics simulations. Morphologic (size, size ratios, and shape) and hemodynamic (inflow, vorticity, shear stress, oscillatory shear index, flow instability) characteristics were automatically calculated. We compared the characteristics between aneurysms that were stable and those that had grown at baseline and final imaging. The significance level after Bonferroni correction was P < .002. RESULTS: At baseline, no significant differences between aneurysms that were stable and those that had grown were detected (P > .002). Significant differences between aneurysms that were stable and those that had grown were seen at the final imaging for shear rate, aneurysm velocity, vorticity, and mean wall shear stress (P < .002). The latter was 11.5 (interquartile range, 5.4-18.8 dyne/cm2) compared with 17.5 (interquartile range, 11.2-29.9 dyne/cm2) in stable aneurysms (P = .001). Additionally, a trend toward lower area weighted average Gaussian curvature in aneurysms that had grown was observed with a median of 6.0 (interquartile range, 3.2-10.7 cm-2) compared with 10.4 (interquartile range, 5.0-21.2 cm-2) in stable aneurysms (P = .004). CONCLUSIONS: Morphologic and hemodynamic characteristics at baseline were not associated with aneurysm growth in our population. After growth, almost all indices increase toward values associated with higher rupture risks. Therefore, we stress the importance of longitudinal imaging and repeat risk assessment in unruptured aneurysms.


Assuntos
Hemodinâmica/fisiologia , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/fisiopatologia , Idoso , Angiografia Cerebral/métodos , Progressão da Doença , Feminino , Humanos , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Medição de Risco
6.
AJNR Am J Neuroradiol ; 40(3): 510-516, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30733253

RESUMO

BACKGROUND AND PURPOSE: Aneurysm hemodynamics has been associated with wall histology and inflammation. We investigated associations between local hemodynamics and focal wall changes visible intraoperatively. MATERIALS AND METHODS: Computational fluid dynamics models were constructed from 3D images of 65 aneurysms treated surgically. Aneurysm regions with different visual appearances were identified in intraoperative videos: 1) "atherosclerotic" (yellow), 2) "hyperplastic" (white), 3) "thin" (red), 4) rupture site, and 5) "normal" (similar to parent artery), They were marked on 3D reconstructions. Regional hemodynamics was characterized by the following: wall shear stress, oscillatory shear index, relative residence time, wall shear stress gradient and divergence, gradient oscillatory number, and dynamic pressure; these were compared using the Mann-Whitney test. RESULTS: Hyperplastic regions had lower average wall shear stress (P = .005) and pressure (P = .009) than normal regions. Flow conditions in atherosclerotic and hyperplastic regions were similar but had higher average relative residence time (P = .03) and oscillatory shear index (P = .04) than thin regions. Hyperplastic regions also had a higher average gradient oscillatory number (P = .002) than thin regions. Thin regions had lower average relative residence time (P < .001), oscillatory shear index (P = .006), and gradient oscillatory number (P < .001) than normal regions, and higher average wall shear stress (P = .006) and pressure (P = .009) than hyperplastic regions. Thin regions tended to be aligned with the flow stream, while atherosclerotic and hyperplastic regions tended to be aligned with recirculation zones. CONCLUSIONS: Local hemodynamics is associated with visible focal wall changes. Slow swirling flow with low and oscillatory wall shear stress was associated with atherosclerotic and hyperplastic changes. High flow conditions prevalent in regions near the flow impingement site characterized by higher and less oscillatory wall shear stress were associated with local "thinning" of the wall.


Assuntos
Hemodinâmica/fisiologia , Aneurisma Intracraniano/patologia , Modelos Cardiovasculares , Humanos , Hidrodinâmica , Imageamento Tridimensional , Aneurisma Intracraniano/fisiopatologia , Fatores de Risco , Estresse Mecânico
7.
J Biomech ; 41(10): 2069-81, 2008 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-18582891

RESUMO

This paper presents the results of the Virtual Intracranial Stenting Challenge (VISC) 2007, an international initiative whose aim was to establish the reproducibility of state-of-the-art haemodynamical simulation techniques in subject-specific stented models of intracranial aneurysms (IAs). IAs are pathological dilatations of the cerebral artery walls, which are associated with high mortality and morbidity rates due to subarachnoid haemorrhage following rupture. The deployment of a stent as flow diverter has recently been indicated as a promising treatment option, which has the potential to protect the aneurysm by reducing the action of haemodynamical forces and facilitating aneurysm thrombosis. The direct assessment of changes in aneurysm haemodynamics after stent deployment is hampered by limitations in existing imaging techniques and currently requires resorting to numerical simulations. Numerical simulations also have the potential to assist in the personalized selection of an optimal stent design prior to intervention. However, from the current literature it is difficult to assess the level of technological advancement and the reproducibility of haemodynamical predictions in stented patient-specific models. The VISC 2007 initiative engaged in the development of a multicentre-controlled benchmark to analyse differences induced by diverse grid generation and computational fluid dynamics (CFD) technologies. The challenge also represented an opportunity to provide a survey of available technologies currently adopted by international teams from both academic and industrial institutions for constructing computational models of stented aneurysms. The results demonstrate the ability of current strategies in consistently quantifying the performance of three commercial intracranial stents, and contribute to reinforce the confidence in haemodynamical simulation, thus taking a step forward towards the introduction of simulation tools to support diagnostics and interventional planning.


Assuntos
Aneurisma/patologia , Stents , Aneurisma/terapia , Fenômenos Biomecânicos/métodos , Artérias Cerebrais/patologia , Simulação por Computador , Hemodinâmica , Humanos , Aneurisma Intracraniano , Modelos Anatômicos , Modelos Biológicos , Modelos Cardiovasculares , Modelos Estatísticos , Neurologia/métodos , Radiologia/métodos , Reprodutibilidade dos Testes
8.
Physiol Meas ; 29(5): 585-94, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18460763

RESUMO

Subject-specific computational and experimental models of hemodynamics in cerebral aneurysms require the specification of physiologic flow conditions. Because patient-specific flow data are not always available, researchers have used 'typical' or population average flow rates and waveforms. However, in order to be able to compare the magnitude of hemodynamic variables between different aneurysms or groups of aneurysms (e.g. ruptured versus unruptured) it is necessary to scale the flow rates to the area of the inflow artery. In this work, a relationship between flow rates and vessel areas is derived from phase-contrast magnetic resonance measurements in the internal carotid arteries and vertebral arteries of normal subjects.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artéria Carótida Interna/anatomia & histologia , Artéria Carótida Interna/fisiologia , Modelos Cardiovasculares , Artéria Vertebral/anatomia & histologia , Artéria Vertebral/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Valores de Referência , Estatística como Assunto
9.
AJNR Am J Neuroradiol ; 39(10): 1860-1866, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30166431

RESUMO

BACKGROUND AND PURPOSE: Hostile hemodynamic conditions and geometries are thought to predispose aneurysms for instability and rupture. This study compares stable, unstable, and ruptured aneurysms while controlling for location and patient characteristics. MATERIALS AND METHODS: The hemodynamics and geometries of 165 stable, 65 unstable, and 554 ruptured aneurysms were compared. Hemodynamics was modeled using image-based computational fluid dynamics. Case-control pairs were selected matching aneurysm location, patient age, and sex. Paired Wilcoxon tests were used to compare hemodynamic and geometric variables among different aneurysm groups. The pairing was repeated 100 times, and the combined P values were calculated and adjusted for multiple testing. RESULTS: Ruptured aneurysms had lower minimum wall shear stress (P = .03), higher maximum wall shear stress (P = .03), more concentrated (P = .03) and mean oscillatory shear stress (P = .03), higher maximum velocity (P = .03), and more complex flows (vortex core-line length, P = .03) than stable aneurysms. Similarly, unstable aneurysms had more concentrated shear stress (P = .04) and more complex flows (vortex core-line length, P = .04) than stable aneurysms. Compared with stable aneurysms, ruptured aneurysms were larger (size ratio, aneurysm size/vessel size, P = .03), more elongated (aspect ratio, P = .03), and irregular (nonsphericity index, P = .03). Similarly, unstable aneurysms were larger (size ratio, P = .04), more elongated (aspect ratio, P = .04), and irregular (bulge location, P = .04; area-weighted Gaussian curvature; P = .04) than stable aneurysms. No significant differences were found between unstable and ruptured aneurysms. CONCLUSIONS: Unstable and ruptured aneurysms have more complex flows with concentrated wall shear stress and are larger, more elongated, and irregular than stable aneurysms, independent of aneurysm location and patient sex and age.


Assuntos
Aneurisma Roto/patologia , Aneurisma Roto/fisiopatologia , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Simulação por Computador , Feminino , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estresse Mecânico
10.
IEEE Trans Med Imaging ; 26(9): 1270-82, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17896598

RESUMO

Rupture of intracranial saccular aneurysms is the most common cause of spontaneous subarachnoid hemorrhage, which has significant morbidity and mortality. Although there is still controversy regarding the decision on which unruptured aneurysms should be treated, this is based primarily on their size. Nonetheless, many large lesions do not rupture whereas some small ones do. It is commonly accepted that hemodynamical factors are important to better understand the natural history of cerebral aneurysms. However, it might not always be practical to carry out a detailed computational analysis of such factors if a prompt assessment is required. Since shape is likely to be dependent on the balance between hemodynamic forces and the aneurysmal surrounding environment, an appropriate morphological 3-D characterization is likely to provide a practical surrogate to quickly evaluate the risk of rupture. In this paper, an efficient and novel methodology for 3-D shape characterization of cerebral aneurysms is described. The aneurysms are isolated by taking into account a portion of their adjacent vessels. Two methods to characterize the morphology of the aneurysms models using moment invariants have been considered: geometrical moment invariants (GMI) and Zernike moment invariants (ZMI). The results have been validated in a database containing 53 patients with a total of 31 ruptured aneurysms and 24 unruptured aneurysms. It has been found that ZMI indices are more robust than GMI, and seem to provide a reliable way to discriminate between ruptured and unruptured aneurysms. Correct rupture prediction rates of approximately equal to 80% were achieved in contrast to 66% that is found when the aspect ratio index is considered.


Assuntos
Algoritmos , Dissecção Aórtica/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/diagnóstico , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
11.
AJNR Am J Neuroradiol ; 38(6): 1180-1186, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385882

RESUMO

BACKGROUND AND PURPOSE: Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. MATERIALS AND METHODS: DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. RESULTS: The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. CONCLUSIONS: Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate.


Assuntos
Angiografia Cerebral/métodos , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Circulação Cerebrovascular/fisiologia , Humanos , Hidrodinâmica , Angiografia por Ressonância Magnética
12.
AJNR Am J Neuroradiol ; 38(3): 570-576, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28209576

RESUMO

BACKGROUND AND PURPOSE: Cerebral aneurysms in the posterior circulation are known to have a higher rupture risk than those in the anterior circulation. We sought to test the hypothesis that differences in hemodynamics can explain the difference in rupture rates. MATERIALS AND METHODS: A total of 117 aneurysms, 63 at the tip of the basilar artery (27 ruptured, 36 unruptured, rupture rate = 43%) and 54 at the bifurcation of the internal carotid artery (11 ruptured, 43 unruptured, rupture rate = 20%) were analyzed with image-based computational fluid dynamics. Several hemodynamic variables were compared among aneurysms at each location and between ruptured and unruptured aneurysms at each location. RESULTS: On average, aneurysms at the basilar tip had more concentrated inflow (P < .001), a larger inflow rate (P < .001), a larger maximum oscillatory shear index (P = .003), more complex flows (P = .033), and smaller areas under low wall shear stress (P < .001) than aneurysms at the bifurcation of the internal carotid artery. In general, ruptured aneurysms had larger inflow concentration (P = .02), larger shear concentration (P = .02), more complex flows (P < .001), and smaller minimum wall shear stress (P = .003) than unruptured aneurysms. CONCLUSIONS: High flow conditions, characterized by large and concentrated inflow jets, complex and oscillatory flow patterns, and wall shear stress distributions with focalized regions of high shear and large regions of low shear, are associated with aneurysm rupture, especially for basilar tip aneurysms. The higher flow conditions in basilar tip aneurysms could explain their increased rupture risk compared with internal carotid bifurcation aneurysms.


Assuntos
Aneurisma Roto/fisiopatologia , Artéria Basilar/fisiopatologia , Artéria Carótida Interna/fisiopatologia , Aneurisma Intracraniano/fisiopatologia , Aneurisma Roto/patologia , Artéria Basilar/patologia , Artéria Carótida Interna/patologia , Hemodinâmica , Humanos , Hidrodinâmica , Aneurisma Intracraniano/patologia , Masculino , Fatores de Risco , Estresse Mecânico
13.
AJNR Am J Neuroradiol ; 38(12): 2301-2307, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28982787

RESUMO

BACKGROUND AND PURPOSE: Different hemodynamic patterns have been associated with aneurysm rupture. The objective was to test whether hemodynamic characteristics of the ruptured aneurysm in patients with multiple aneurysms were different from those in unruptured aneurysms in the same patient. MATERIALS AND METHODS: Twenty-four mirror and 58 ipsilateral multiple aneurysms with 1 ruptured and the others unruptured were studied. Computational fluid dynamics models were created from 3D angiographies. Case-control studies of mirror and ipsilateral aneurysms were performed with paired Wilcoxon tests. RESULTS: In mirror pairs, the ruptured aneurysm had more oscillatory wall shear stress (P = .007) than the unruptured one and tended to be more elongated (higher aspect ratio), though this trend achieved only marginal significance (P = .03, 1-sided test). In ipsilateral aneurysms, ruptured aneurysms had larger maximum wall shear (P = .05), more concentrated (P < .001) and oscillatory wall shear stress (P < .001), stronger (P < .001) and more concentrated inflow jets (P < .001), larger maximum velocity (P < .001), and more complex flow patterns (P < .001) compared with unruptured aneurysms. Additionally, ruptured aneurysms were larger (P < .001) and more elongated (P < .001) and had wider necks (P < .001) and lower minimum wall shear stress (P < .001) than unruptured aneurysms. CONCLUSIONS: High wall shear stress oscillations and larger aspect ratios are associated with rupture in mirror aneurysms. Adverse flow conditions characterized by high and concentrated inflow jets; high, concentrated, and oscillatory wall shear stress; and strong, complex and unstable flow patterns are associated with rupture in ipsilateral multiple aneurysms. In multiple ipsilateral aneurysms, these unfavorable flow conditions are more likely to develop in larger, more elongated, more wide-necked, and more distal aneurysms.


Assuntos
Aneurisma Roto/fisiopatologia , Hemodinâmica/fisiologia , Aneurisma Intracraniano/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Simulação por Computador , Feminino , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Fatores de Risco
14.
AJNR Am J Neuroradiol ; 38(11): 2111-2118, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28860212

RESUMO

BACKGROUND AND PURPOSE: Intracranial aneurysms originating at the posterior communicating artery are known to have high rupture risk compared with other locations. We tested the hypothesis that different angioarchitectures (ie, branch point configuration) of posterior communicating artery aneurysms are associated with aneurysm hemodynamics, which in turn predisposes aneurysms to rupture. MATERIALS AND METHODS: A total of 313 posterior communicating artery aneurysms (145 ruptured, 168 unruptured) were studied with image-based computational fluid dynamics. Aneurysms were classified into different angioarchitecture types depending on the location of the aneurysm with respect to parent artery bifurcation. Hemodynamic characteristics were compared between ruptured and unruptured aneurysms, as well as among aneurysms with different angioarchitectures. RESULTS: Angioarchitecture was associated with rupture (P = .003). Ruptured aneurysms had higher, more concentrated, and more oscillatory wall shear stress distributions (maximum wall shear stress, P < .001; shear concentration index, P < .001; mean oscillatory shear index, P < .001), stronger and more concentrated inflow jets (represented as Q, P = .01; inflow concentration index, P < .001), and more complex and unstable flow patterns (vortex core length, P < .001; proper orthogonal decomposition entropy, P < .001) compared with unruptured aneurysms. These adverse conditions were more common in aneurysms with bifurcation-type angioarchitectures compared with those with lateral or sidewall angioarchitectures. Interestingly, ruptured aneurysms also had lower normalized mean wall shear stress (P = .02) and minimum wall shear stress (P = .002) than unruptured aneurysms. CONCLUSIONS: High-flow intrasaccular hemodynamic characteristics, commonly found in bifurcation-type angioarchitectures, are associated with the posterior communicating artery aneurysm rupture status. These characteristics include strong and concentrated inflow jets, concentrated regions of elevated wall shear stress, oscillatory wall shear stress, lower normalized wall shear stress, and complex and unstable flow patterns.


Assuntos
Aneurisma Roto/fisiopatologia , Hemodinâmica/fisiologia , Aneurisma Intracraniano/fisiopatologia , Aneurisma Roto/complicações , Humanos , Hidrodinâmica , Aneurisma Intracraniano/complicações , Masculino , Fatores de Risco , Estresse Mecânico
15.
AJNR Am J Neuroradiol ; 27(10): 2061-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17110667

RESUMO

BACKGROUND AND PURPOSE: The purpose of this study was to investigate the effects of unequal physiologic flow conditions in the internal carotid arteries (ICAs) on the hemodynamics of anterior communicating artery aneurysms. METHODS: Patient-specific computational fluid dynamics models of 2 cerebral aneurysms were constructed from bilateral 3D rotational angiograms. The flow dynamics of the aneurysm sac were analyzed under the effect of unequal mean flows, phase shifts, and waveforms between the ICAs. A total of 9 simulations were performed for each patient; cine flow velocity simulations and unsteady wall shear stress (WSS) maps were created for each flow condition. Time-dependent curves of average WSS magnitude over selected regions on the aneurysms were constructed. RESULTS: Mean flow unbalances in the feeding vessels tended to shift the regions of elevated WSS towards the dominating inflow jet and to change the magnitude of the WSS peaks. The overall qualitative appearance of the WSS distribution and velocity simulations was not substantially affected. Phase and waveform asymmetry increased the temporal complexity of the hemodynamic patterns and tended to destabilize the flow pattern. CONCLUSIONS: Differences in the relative phase and waveform shape in ICAs can significantly affect the complexity and stability of the hemodynamic force distributions. The magnitude of these effects is related to the geometry of the aneurysm and the feeding vessels. Conditions affecting the flow characteristics in the parent arteries of cerebral aneurysms with more than 1 avenue of inflow should be incorporated into flow models.


Assuntos
Artéria Carótida Interna/fisiopatologia , Imageamento Tridimensional , Aneurisma Intracraniano/fisiopatologia , Angiografia , Artéria Carótida Interna/diagnóstico por imagem , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional , Sensibilidade e Especificidade
16.
AJNR Am J Neuroradiol ; 27(8): 1703-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16971618

RESUMO

PURPOSE: The purpose of this study is to show the influence of the upstream parent artery geometry on intraaneurysmal hemodynamics of cerebral aneurysms. METHODS: Patient-specific models of 4 cerebral aneurysms (1 posterior communicating artery [PcomA], 2 middle cerebral artery [MCA], and 1 anterior communicating artery [AcomA]) were constructed from 3D rotational angiography images. Two geometric models were constructed for each aneurysm. One model had the native parent vessel geometry; the second model was truncated approximately 1 cm upstream from the aneurysm, and the parent artery replaced with a straight cylinder. Corresponding finite element grids were generated and computational fluid dynamics simulations were carried out under pulsatile flow conditions. The intra-aneurysmal flow patterns and wall shear stress (WSS) distributions were visualized and compared. RESULTS: Models using the truncated parent vessel underestimated the WSS in the aneurysms in all cases and shifted the impaction zone to the neck compared with the native geometry. These effects were more pronounced in the PcomA and AcomA aneurysms where upstream curvature was substantial. The MCA aneurysm with a long M1 segment was the least effected. The more laminar flow pattern within the parent vessel in truncated models resulted in a less complex intra-aneurysmal flow patterns with fewer vortices and less velocity at the dome. CONCLUSIONS: Failure to properly model the inflow stream contributed by the upstream parent artery can significantly influence the results of intra-aneurysmal hemodynamic models. The upstream portion of the parent vessel of cerebral aneurysms should be included to accurately represent the intra-aneurysmal hemodynamics.


Assuntos
Angiografia Cerebral , Simulação por Computador , Hemodinâmica/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Modelos Teóricos , Velocidade do Fluxo Sanguíneo/fisiologia , Análise de Elementos Finitos , Humanos , Fluxo Pulsátil/fisiologia
17.
AJNR Am J Neuroradiol ; 36(9): 1695-703, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26228891

RESUMO

BACKGROUND AND PURPOSE: Aneurysm progression and rupture is thought to be governed by progressive degradation and weakening of the wall in response to abnormal hemodynamics. Our goal was to investigate the relationship between the intra-aneurysmal hemodynamic conditions and wall mechanical properties in human aneurysms. MATERIALS AND METHODS: A total of 8 unruptured aneurysms were analyzed. Computational fluid dynamics models were constructed from preoperative 3D rotational angiography images. The aneurysms were clipped, and the domes were resected and mechanically tested to failure with a uniaxial testing system under multiphoton microscopy. Linear regression analysis was performed to explore possible correlations between hemodynamic quantities and the failure characteristics and stiffness of the wall. RESULTS: The ultimate strain was correlated negatively to aneurysm inflow rate (P = .021), mean velocity (P = .025), and mean wall shear stress (P = .039). It was also correlated negatively to inflow concentration, oscillatory shear index, and measures of the complexity and instability of the flow; however, these trends did not reach statistical significance. The wall stiffness at high strains was correlated positively to inflow rate (P = .014), mean velocity (P = .008), inflow concentration (P = .04), flow instability (P = .006), flow complexity (P = .019), wall shear stress (P = .002), and oscillatory shear index (P = .004). CONCLUSIONS: In a study of 8 unruptured intracranial aneurysms, ultimate strain was correlated negatively with aneurysm inflow rate, mean velocity, and mean wall shear stress. Wall stiffness was correlated positively with aneurysm inflow rate, mean velocity, wall shear stress, flow complexity and stability, and oscillatory shear index. These trends and the impact of hemodynamics on wall structure and mechanical properties should be investigated further in larger studies.


Assuntos
Hemodinâmica/fisiologia , Aneurisma Intracraniano/fisiopatologia , Humanos , Hidrodinâmica , Imageamento Tridimensional , Aneurisma Intracraniano/diagnóstico por imagem , Radiografia , Estresse Mecânico
18.
J Biomech ; 34(6): 815-9, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11470121

RESUMO

Surface mesh generation over intersecting triangulations is a problem common to many branches of biomechanics. A new strategy for merging intersecting triangulations is described. The basis of the method is that object surfaces are represented as the zero-level iso-surface of the distance-to-surface function defined on a background grid. Thus, the triangulation of intersecting objects reduces to the extraction of an iso-surface from an unstructured grid. In a first step, a regular background mesh is constructed. For each point of the background grid, the closest distance to the surface of each object is computed. Background points are then classified as external or internal by checking the direction of the surface normal at the closest location and assigned a positive or negative distance, respectively. Finally, the zero-level iso-surface is constructed. This is the final triangulation of the intersecting objects. The overall accuracy is enhanced by adaptive refinement of the background grid elements. The resulting surface models are used as support surfaces to generate three-dimensional grids for finite element analysis. The algorithms are demonstrated by merging arterial branches independently reconstructed from contrast-enhanced magnetic resonance images and by adding extra features such as vascular stents. Although the methodology is presented in the context of finite element analysis of blood flow, the algorithms are general and can be applied in other areas as well.


Assuntos
Fenômenos Biomecânicos , Análise de Elementos Finitos , Modelos Biológicos , Algoritmos , Artérias Carótidas/anatomia & histologia , Artérias Carótidas/fisiologia , Hemodinâmica , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Cardiovasculares
19.
Int J Numer Method Biomed Eng ; 30(9): 909-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24687950

RESUMO

Simulations using the patient-specific geometry of the aneurysm may help in a better planning of the treatment and in a consequent reduction of the associated risks. We propose, evaluate, and implement a methodology for the simulation of flow diverter (FD) devices in intracranial aneurysms by using a porous medium method (PMM), which greatly reduces the computational cost of these simulations compared with immersed method (IMM) approaches used to model complex FDs. The method relies on parameters from an empirical correlation derived from experimental observations in wire screens, consistent with CFD simulations. The verification of our PMM strategy was carried out by comparing the results of simulations in different (patient-specific) geometries and FDs, to those obtained under identical conditions by the IMM. Overall, both quantitative and qualitative results are consistent between IMM and PMM in cases where the local porosity remains roughly uniform throughout the neck, with differences in the reduction of the observables lower than 10%. This PMM strategy is up to 10 times faster than the IMM, which allows for a runtime of hours instead of days, bringing it closer for its application in the clinic.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Aneurisma Intracraniano/terapia , Prótese Vascular , Simulação por Computador , Desenho de Equipamento , Humanos , Aneurisma Intracraniano/fisiopatologia , Modelos Teóricos , Porosidade
20.
AJNR Am J Neuroradiol ; 35(8): 1567-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24722302

RESUMO

BACKGROUND AND PURPOSE: Predicting the outcome of flow diversion treatment of cerebral aneurysms remains challenging. Our aim was to investigate the relationship between hemodynamic conditions created immediately after flow diversion and subsequent occlusion of experimental aneurysms in rabbits. MATERIALS AND METHODS: The hemodynamic environment before and after flow-diversion treatment of elastase-induced aneurysms in 20 rabbits was modeled by using image-based computational fluid dynamics. Local aneurysm occlusion was quantified by using a voxelization technique on 3D images acquired 8 weeks after treatment. Global and local voxel-by-voxel hemodynamic variables were used to statistically compare aneurysm regions that later thrombosed to regions that remained patent. RESULTS: Six aneurysms remained patent at 8 weeks, while 14 were completely or nearly completely occluded. Patent aneurysms had statistically larger neck sizes (P = .0015) and smaller mean transit times (P = .02). The velocity, vorticity, and shear rate were approximately 2.8 times (P < .0001) larger in patent regions-that is, they had larger "flow activity" than regions that progressed to occlusion. Statistical models based on local hemodynamic variables were capable of predicting local occlusion with good precision (84% accuracy), especially away from the neck (92%-94%). Predictions near the neck were poorer (73% accuracy). CONCLUSIONS: These results suggests that the dominant healing mechanism of occlusion within the aneurysm dome is related to slow-flow-induced thrombosis, while near the neck, other processes could be at play simultaneously.


Assuntos
Hemodinâmica/fisiologia , Aneurisma Intracraniano/terapia , Animais , Modelos Animais de Doenças , Hidrodinâmica , Imageamento Tridimensional , Coelhos , Stents
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa