Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 17(9): e1009909, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478485

RESUMO

The emergence and rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to the global healthcare. There is an urgent need for new antibacterial substances or new treatment strategies to deal with the infections by MDR bacterial pathogens, especially the Gram-negative pathogens. In this study, we show that a number of synthetic cationic peptides display strong synergistic antimicrobial effects with multiple antibiotics against the Gram-negative pathogen Pseudomonas aeruginosa. We found that an all-D amino acid containing peptide called D-11 increases membrane permeability by attaching to LPS and membrane phospholipids, thereby facilitating the uptake of antibiotics. Subsequently, the peptide can dissipate the proton motive force (PMF) (reducing ATP production and inhibiting the activity of efflux pumps), impairs the respiration chain, promotes the production of reactive oxygen species (ROS) in bacterial cells and induces intracellular antibiotics accumulation, ultimately resulting in cell death. By using a P. aeruginosa abscess infection model, we demonstrate enhanced therapeutic efficacies of the combination of D-11 with various antibiotics. In addition, we found that the combination of D-11 and azithromycin enhanced the inhibition of biofilm formation and the elimination of established biofilms. Our study provides a realistic treatment option for combining close-to-nature synthetic peptide adjuvants with existing antibiotics to combat infections caused by P. aeruginosa.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
2.
J Enzyme Inhib Med Chem ; 38(1): 267-281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36600674

RESUMO

Antimicrobial resistance is a global concern, far from being resolved. The need of new drugs against new targets is imminent. In this work, we present a family of aminoalkyl resveratrol derivatives with antibacterial activity inspired by the properties of cationic amphipathic antimicrobial peptides. Surprisingly, the newly designed molecules display modest activity against aerobically growing bacteria but show surprisingly good antimicrobial activity against anaerobic bacteria (Gram-negative and Gram-positive) suggesting specificity towards this bacterial group. Preliminary studies into the action mechanism suggest that activity takes place at the membrane level, while no cross-resistance with traditional antibiotics is observed. Actually, some good synergistic relations with existing antibiotics were found against Gram-negative pathogens. However, some cytotoxicity was observed, despite their low haemolytic activity. Our results show the importance of the balance between positively charged moieties and hydrophobicity to improve antimicrobial activity, setting the stage for the design of new drugs based on these molecules.


Assuntos
Bactérias Gram-Negativas , Bactérias Gram-Positivas , Resveratrol/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos , Bactérias
3.
J Nat Prod ; 85(6): 1459-1473, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35621995

RESUMO

In the era of antimicrobial resistance, the identification of new compounds with strong antimicrobial activity and the development of alternative therapies to fight drug-resistant bacteria are urgently needed. Here, we have used resveratrol, a safe and well-known plant-derived stilbene with poor antimicrobial properties, as a scaffold to design several new families of antimicrobials by adding different chemical entities at specific positions. We have characterized the mode of action of the most active compounds prepared and have examined their synergistic antibacterial activity in combination with traditional antibiotics. Some alkyl- and silyl-resveratrol derivatives show bactericidal activity against Gram-positive bacteria in the same low micromolar range of traditional antibiotics, with an original mechanism of action that combines membrane permeability activity with ionophore-related activities. No cross-resistance or antagonistic effect was observed with traditional antibiotics. Synergism was observed for some specific general-use antibiotics, such as aminoglycosides and cationic antimicrobial peptide antibiotics. No hemolytic activity was observed at the active concentrations or above, although some low toxicity against an MRC-5 cell line was noted.


Assuntos
Anti-Infecciosos , Bactérias Gram-Positivas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Resveratrol
4.
J Antimicrob Chemother ; 75(6): 1537-1545, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129856

RESUMO

OBJECTIVES: We report the in vivo trypanocidal activity of the bacteriocin AS-48 (lacking toxicity), which is produced by Enterococcus faecalis, against the flagellated protozoan Trypanosoma cruzi, the aetiological agent of Chagas' disease. METHODS: We determined the in vivo activity of AS-48 against the T. cruzi Arequipa strain in BALB/c mice (in both acute and chronic phases of Chagas' disease). We evaluated the parasitaemia, the reactivation of parasitaemia after immunosuppression and the nested parasites in the chronic phase by PCR in target tissues. RESULTS: AS-48 reduced the parasitaemia profile in acute infection and showed a noteworthy reduction in the parasitic load in chronic infection after immunosuppression according to the results obtained by PCR (double-checking to demonstrate cure). CONCLUSIONS: AS-48 is a promising alternative that provides a step forward in the development of a new therapy against Chagas' disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Parasitemia/tratamento farmacológico
5.
Artigo em Inglês | MEDLINE | ID: mdl-29987141

RESUMO

The increasing incidence of multidrug-resistant Mycobacterium tuberculosis strains and the very few drugs available for treatment are promoting the discovery and development of new molecules that could help in the control of this disease. Bacteriocin AS-48 is an antibacterial peptide produced by Enterococcus faecalis and is active against several Gram-positive bacteria. We have found that AS-48 was active against Mycobacterium tuberculosis, including H37Rv and other reference and clinical strains, and also against some nontuberculous clinical mycobacterial species. The combination of AS-48 with either lysozyme or ethambutol (commonly used in the treatment of drug-susceptible tuberculosis) increased the antituberculosis action of AS-48, showing a synergic interaction. Under these conditions, AS-48 exhibits a MIC close to some MICs of the first-line antituberculosis agents. The inhibitory activity of AS-48 and its synergistic combination with ethambutol were also observed on M. tuberculosis-infected macrophages. Finally, AS-48 did not show any cytotoxicity against THP-1, MHS, and J774.2 macrophage cell lines at concentrations close to its MIC. In summary, bacteriocin AS-48 has interesting antimycobacterial activity in vitro and low cytotoxicity, so further studies in vivo will contribute to its development as a potential additional drug for antituberculosis therapy.


Assuntos
Antituberculosos/farmacologia , Bacteriocinas/farmacologia , Etambutol/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Sinergismo Farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana/métodos , Muramidase/metabolismo , Células RAW 264.7 , Tuberculose/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-28167557

RESUMO

We report the feasibility of enterocin AS-48, a circular cationic peptide produced by Enterococcus faecalis, as a new leishmanicidal agent. AS-48 is lethal to Leishmania promastigotes as well as to axenic and intracellular amastigotes at low micromolar concentrations, with scarce cytotoxicity to macrophages. AS-48 induced a fast bioenergetic collapse of L. donovani promastigotes but only a partial permeation of their plasma membrane with limited entrance of vital dyes, even at concentrations beyond its full lethality. Fluoresceinated AS-48 was visualized inside parasites by confocal microscopy and seen to cause mitochondrial depolarization and reactive oxygen species production. Altogether, AS-48 appeared to have a mixed leishmanicidal mechanism that includes both plasma membrane permeabilization and additional intracellular targets, with mitochondrial dysfunctionality being of special relevance. This complex leishmanicidal mechanism of AS-48 persisted even for the killing of intracellular amastigotes, as evidenced by transmission electron microscopy. We demonstrated the potentiality of AS-48 as a new and safe leishmanicidal agent, expanding the growing repertoire of eukaryotic targets for bacteriocins, and our results provide a proof of mechanism for the search of new leishmanicidal bacteriocins, whose diversity constitutes an almost endless source for new structures at moderate production cost and whose safe use on food preservation is well established.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Antiprotozoários/farmacologia , Bacteriocinas/farmacologia , Leishmania donovani/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antiprotozoários/isolamento & purificação , Bacteriocinas/isolamento & purificação , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enterococcus faecalis/química , Enterococcus faecalis/metabolismo , Corantes Fluorescentes/metabolismo , Concentração Inibidora 50 , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Estágios do Ciclo de Vida/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Especificidade da Espécie , Coloração e Rotulagem/métodos
7.
J Struct Biol ; 190(2): 162-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25816760

RESUMO

The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer.


Assuntos
Antibacterianos/química , Bacteriocinas/química , Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Modelos Moleculares , Antibacterianos/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Cristalização , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Oligonucleotídeos/genética , Conformação Proteica , Engenharia de Proteínas/métodos , Eletricidade Estática , Ultracentrifugação
8.
Microbiol Spectr ; 12(1): e0361123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38088546

RESUMO

IMPORTANCE: Genome mining studies have revealed the remarkable combinatorial diversity of ribosomally synthesized and post-translationally modified peptides (RiPPs) in marine bacteria, including prochlorosins. However, mining strategies also prove valuable in investigating the genomic landscape of associated genes within biosynthetic gene cluster (BGC) specific to targeted RiPPs of interest. Our study contributes to the enrichment of knowledge regarding prochlorosin diversity. It offers insights into potential mechanisms involved in their biosynthesis and modification, such as hyper-modification, which may give rise to active lantibiotics. Additionally, our study uncovers putative novel promiscuous post-translational enzymes, thereby expanding the chemical space explored within the Synechococcus genus. Moreover, this research extends the applications of mining techniques beyond the discovery of new RiPP-like clusters, allowing for a deeper understanding of genomics and diversity. Furthermore, it holds the potential to reveal previously unknown functions within the intriguing RiPP families, particularly in the case of prochlorosins.


Assuntos
Synechococcus , Humanos , Synechococcus/genética , Peptídeos/metabolismo , Genômica , Genoma , Família Multigênica , Processamento de Proteína Pós-Traducional
9.
J Biol Chem ; 287(32): 27007-13, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22700986

RESUMO

Over recent years, several examples of natural ribosomally synthesized circular proteins and peptides from diverse organisms have been described. They are a group of proteins for which the precursors must be post-translationally modified to join the N and C termini with a peptide bond. This feature appears to confer a range of potential advantages because these proteins show increased resistance to proteases and higher thermodynamic stability, both of which improve their biological activity. They are produced by prokaryotic and eukaryotic organisms and show diverse biological activities, related mostly to a self-defense or competition mechanism of the producer organisms, with the only exception being the circular pilins. This minireview highlights ribosomally synthesized circular proteins produced by members of the domain Bacteria: circular bacteriocins, cyanobactins, and circular pilins. We pay special attention to the genetic organization of the biosynthetic machinery of these molecules, the role of circularization, and the differences in the possible circularization mechanisms.


Assuntos
Proteínas de Bactérias/química , Bacteriocinas/química , Proteínas de Fímbrias/química , Modelos Moleculares , Conformação Proteica
10.
ACS Synth Biol ; 12(1): 164-177, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36520855

RESUMO

ProcM-like enzymes are class II promiscuous lanthipeptide synthetases that are an attractive tool in synthetic biology for producing lanthipeptides with biotechnological or clinically desired properties. SyncM is a recently described modification enzyme from this family used to develop a versatile expression platform for engineering lanthipeptides. Most remarkably, SyncM can modify up to 79 SyncA substrates in a single strain. Six SyncAs were previously characterized from this pool of substrates. They showed particular characteristics, such as the presence of one or two lanthionine rings, different flanking residues influencing ring formation, and different ring directions, demonstrating the relaxed specificity of SyncM toward its precursor peptides. To gain a deeper understanding of the potential of SyncM as a biosynthetic tool, we further explored the enzyme's capabilities and limits in dehydration and ring formation. We used different SyncA scaffolds for peptide engineering, including changes in the ring's directionality (relative position of Ser/Thr to Cys in the peptide) and size. We further aimed to rationally design mimetics of cyclic antimicrobials and introduce macrocycles in prochlorosin-related and nonrelated substrates. This study highlights the largest lanthionine ring with 15 amino acids (ring-forming residues included) described to date. Taking advantage of the amino acid substrate tolerance of SyncM, we designed the first single-SyncA-based antimicrobial. The insights gained from this work will aid future bioengineering studies. Additionally, it broadens SyncM's application scope for introducing macrocycles in other bioactive molecules.


Assuntos
Bacteriocinas , Desidratação , Humanos , Ciclização , Peptídeos/metabolismo , Sulfetos/química , Aminoácidos/metabolismo
11.
Front Microbiol ; 14: 1110360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819031

RESUMO

Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.

12.
Clin Microbiol Infect ; 29(1): 112.e1-112.e4, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36210627

RESUMO

OBJECTIVES: To test a real-life sample pooling screening strategy which contributes to increasing the diagnostic capacity of clinical laboratories and expanding access to massive screening of hepatitis C. METHODS: After evaluating the sensitivity of the pooling strategy for seven different commercial assays which are used to determine the concentration of hepatitis C virus (HCV)-RNA in the plasma or serum, consecutive samples submitted for HCV diagnosis during the first 3 weeks of November 2021 were tested for HCV antibodies and, in parallel and in a blinded way, were pooled into 100 samples and tested for HCV-RNA. When the result was positive, a strategy to un-mask the positive(s) pool(s), which needed up to 15 total HCV-RNA tests, was used. RESULTS: All platforms were able to detect the presence of HCV-RNA in a single sample from a patient with viremic HCV present in pools of up to at least 10 000 HCV-RNA-free samples. A total of 1700 samples (17 pools) were analysed, with an overall prevalence of anti-HCV and HCV-RNA of 0.24%. After pooling, we could detect all samples previously detected using standard diagnosis tests (reflex testing) with a specificity and sensitivity of 100% (CI, 99.78-100%). Given the median current prices of anti-HCV and HCV-RNA on the market in Spain as well as personnel costs, testing using the pooling strategy would have resulted in a save of 3320€. CONCLUSIONS: Here, we demonstrated that by improving cost effectiveness, with no loss of sensitivity and specificity, the strategy of pooling samples may serve as an appropriate tool for use in large-scale screening of HCV.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Programas de Rastreamento/métodos , Hepatite C/epidemiologia , Sensibilidade e Especificidade , Plasma , RNA Viral/genética , Anticorpos Anti-Hepatite C
13.
Cell Mol Life Sci ; 68(17): 2845-57, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21590312

RESUMO

Bacteriocin AS-48 is an intriguing molecule because of its unique structural characteristics, genetic regulation, broad activity spectrum, and potential biotechnological applications. It was the first reported circular bacteriocin and has been undoubtedly the best characterized for the last 25 years. Thus, AS-48 is the prototype of circular bacteriocins (class IV), for which the structure and genetic regulation have been elucidated. This review discusses the state-of-the-art in genetic engineering with regard to this circular protein, with the use of site-directed mutagenesis and circular permutation. Mutagenesis studies have been used to unravel the role of (a) different residues in the biological activity, underlining the relevance of several residues involved in membrane interaction and the low correlation between stability and activity and (b) three amino acids involved in maturation, providing information on the specificity of the leader peptidase and the circularization process itself. To investigate the role of circularity in the stability and biological properties of the enterocin AS-48, two different ways of linearization have been attempted: in vitro by limited proteolysis experiments and in vivo by circular permutation in the structural gene as-48A. The results summarized here show the significance of circularization on the secondary structure, potency and, especially, the stability of AS-48 and point as well to a putative role of the leader peptide as a protecting moiety in the pre-proprotein. Taken all together, the data available on circular bacteriocins support the idea that AS-48 has been engineered by nature to make a remarkably active and stable protein with a broad spectrum of activity.


Assuntos
Bacteriocinas/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Enterococcus faecalis/metabolismo , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Estrutura Secundária de Proteína
14.
J Med Chem ; 65(6): 4752-4766, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34928608

RESUMO

Guanidine DNA quadruplex (G4-DNA) structures convey a distinctive layer of epigenetic information that is critical for regulating key biological activities and processes as transcription, replication, and repair in living cells. The information regarding their role and use as therapeutic drug targets in bacteria is still scarce. Here, we tested the biological activity of a G4-DNA ligand library, based on the naphthalene diimide (NDI) pharmacophore, against both Gram-positive and Gram-negative bacteria. For the best compound identified, NDI-10, a different action mechanism was described for Gram-positive or negative bacteria. This asymmetric activity profile could be related to the different prevalence of putative G4-DNA structures in each group, the influence that they can exert on gene expression, and the different roles of the G4 structures in these bacteria, which seem to promote transcription in Gram-positive bacteria and repress transcription in Gram-negatives.


Assuntos
Quadruplex G , Antibacterianos/farmacologia , DNA , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Imidas , Ligantes , Naftalenos
15.
Int J Antimicrob Agents ; 58(5): 106434, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34525402

RESUMO

The outer membrane of Gram-negative bacteria constitutes a permeability barrier that prevents certain antibiotics reaching their target, thus conferring a high tolerance to a wide range of antibiotics. Combined therapies of antibiotics and outer membrane-perturbing drugs have been proposed as an alternative treatment to extend the use of antibiotics active against Gram-positive bacteria to Gram-negative bacteria. Among the outer membrane-active compounds, the outer membrane-permeabilising peptides play a prominent role. They form a group of small cationic and amphipathic molecules with the ability to insert specifically into bacterial membranes, inducing their permeabilisation and/or disruption. Here we assessed the combined effect of several compounds belonging to the main antibiotic families and the cathelicidin close-to-nature outer membrane peptide D-11 against four clinically relevant Gram-negative bacteria. The results showed that peptide D-11 displays strong synergistic activity with several antibiotics belonging to different families, in particular against Klebsiella pneumoniae, even better than some other outer membrane-active peptides that are currently in clinical trials, such as SPR741. Notably, we observed this activity in vitro, ex vivo in a newly designed bacteraemia model, and in vivo in a mouse abscess infection model. Overall, our results suggest that D-11 is a good candidate to repurpose the activity of traditional antibiotics against K. pneumoniae.


Assuntos
Abscesso/tratamento farmacológico , Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Catelicidinas/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Abscesso/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Quimioterapia Combinada , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Permeabilidade/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos
16.
Commun Biol ; 4(1): 31, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398076

RESUMO

The development and dissemination of antibiotic-resistant bacterial pathogens is a growing global threat to public health. Novel compounds and/or therapeutic strategies are required to face the challenge posed, in particular, by Gram-negative bacteria. Here we assess the combined effect of potent cell-wall synthesis inhibitors with either natural or synthetic peptides that can act on the outer-membrane. Thus, several linear peptides, either alone or combined with vancomycin or nisin, were tested against selected Gram-negative pathogens, and the best one was improved by further engineering. Finally, peptide D-11 and vancomycin displayed a potent antimicrobial activity at low µM concentrations against a panel of relevant Gram-negative pathogens. This combination was highly active in biological fluids like blood, but was non-hemolytic and non-toxic against cell lines. We conclude that vancomycin and D-11 are safe at >50-fold their MICs. Based on the results obtained, and as a proof of concept for the newly observed synergy, a Pseudomonas aeruginosa mouse infection model experiment was also performed, showing a 4 log10 reduction of the pathogen after treatment with the combination. This approach offers a potent alternative strategy to fight (drug-resistant) Gram-negative pathogens in humans and mammals.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Peptídeos/farmacologia , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Antibacterianos/uso terapêutico , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Nisina/uso terapêutico , Peptídeos/uso terapêutico , Uridina Difosfato Ácido N-Acetilmurâmico/antagonistas & inibidores , Vancomicina/farmacologia , Vancomicina/uso terapêutico
17.
ACS Synth Biol ; 10(10): 2579-2591, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34554737

RESUMO

Lanthipeptides are ribosomally synthesized and post-translationally modified peptides characterized by the presence of lanthionine rings that provide stability and functionality. Genome mining techniques have shown their huge diversity and potential for the discovery of novel active molecules. However, in many cases, they are not easily produced under laboratory conditions. The heterologous expression of these molecules using well-characterized lanthipeptide biosynthetic enzymes is rising as an alternative system for the design and production of new lanthipeptides with biotechnological or clinical properties. Nevertheless, the substrate-enzyme specificity limits the complete modification of the desired peptides and hence, their full stability and/or biological activity. New low substrate-selective biosynthetic enzymes are therefore necessary for the heterologous production of new-to-nature peptides. Here, we have identified, cloned, and heterologously expressed in Lactococcus lactis the most promiscuous lanthipeptide synthetase described to date, i.e., SyncM from the marine cyanobacteria Synechococcus MITS9509. We have characterized the functionality of SyncM by the successful expression of 15 out of 18 different SyncA substrates, subsequently determining the dehydration and cyclization processes in six representatives of them. This characterization highlights the very relaxed substrate specificity of SyncM toward its precursors and the ability to catalyze the formation of exceptionally large rings in a variety of topologies. Our results suggest that SyncM could be an attractive enzyme to design and produce a wide variety of new-to-nature lanthipeptides with a broad range of ring topologies.


Assuntos
Alanina/análogos & derivados , Ligases/genética , Peptídeos/metabolismo , Sulfetos/química , Alanina/química , Aminoácidos/química , Clonagem Molecular , Ciclização , Lactococcus lactis/genética , Ligases/metabolismo , Peptídeos/química , Conformação Proteica , Especificidade por Substrato
18.
Antibiotics (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34438974

RESUMO

The treatment and hospital-spread-control of methicillin-resistant Staphylococcus aureus (MRSA) is an important challenge since these bacteria are involved in a considerable number of nosocomial infections that are difficult to treat and produce prolonged hospitalization, thus also increasing the risk of death. In fact, MRSA strains are frequently resistant to all ß-lactam antibiotics, and co-resistances with other drugs such as macrolides, aminoglycosides, and lincosamides are usually reported, limiting the therapeutical options. To this must be added that the ability of these bacteria to form biofilms on hospital surfaces and devices confer high antibiotic resistance and favors horizontal gene transfer of genetic-resistant mobile elements, the spreading of infections, and relapses. Here, we genotypically and phenotypically characterized 100 clinically isolated S. aureus for their resistance to 18 antibiotics (33% of them were OXA resistant MRSA) and ability to form biofilms. From them, we selected 48 strains on the basis on genotype group, antimicrobial-resistance profile, and existing OXA resistance to be assayed against bacteriocin AS-48. The results showed that AS-48 was active against all strains, regardless of their clinical source, genotype, antimicrobial resistance profile, or biofilm formation capacity, and this activity was enhanced in the presence of the antimicrobial peptide lysozyme. Finally, we explored the effect of AS-48 on formed S. aureus biofilms, observing a reduction in S. aureus S-33 viability. Changes in the matrix structure of the biofilms as well as in the cell division process were observed with scanning electron microscopy in both S-33 and S-48 S. aureus strains.

19.
Appl Environ Microbiol ; 76(21): 7268-76, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833793

RESUMO

AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81(His-1Ile)) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.


Assuntos
Bacteriocinas/biossíntese , Antibacterianos/farmacologia , Plasmídeos de Bacteriocinas/genética , Bacteriocinas/genética , Bacteriocinas/farmacologia , Meios de Cultura , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Engenharia Genética , Microbiologia Industrial/métodos , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Antibiotics (Basel) ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887311

RESUMO

The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that can cause diverse health care-associated infections. Their genome plasticity enables easy acquisition of virulence factors as well as antibiotic resistances. Urinary tract infections (UTIs) and catheter-associated UTIs are common diseases caused by enterococci. In this study, Enterococcus strains isolated from UTIs were characterized, showing that the majority were E. faecalis and contained several virulence factors associated to a better colonization of the urinary tract. Their susceptibility against the bacteriocin AS-48 and several antibiotics was tested. AS-48 is a potent circular bacteriocin that causes bacterial death by pore formation in the cell membrane. The interest of this bacteriocin is based on the potent inhibitory activity, the high stability against environmental conditions, and the low toxicity. AS-48 was active at concentrations below 10 mg/L even against antibiotic-resistant strains, whereas these strains showed resistance to, at least, seven of the 20 antibiotics tested. Moreover, the effect of AS-48 combined with antibiotics commonly used to treat UTIs was largely synergistic (with up to 100-fold MIC reduction) and only occasionally additive. These data suggest AS-48 as a potential novel drug to deal with or prevent enterococcal infections.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa