RESUMO
PURPOSE: Pathogenic LZTR1 variants cause schwannomatosis and dominant/recessive Noonan syndrome (NS). We aim to establish an association between heterozygous loss-of-function LZTR1 alleles and isolated multiple café-au-lait macules (CaLMs). METHODS: A total of 849 unrelated participants with multiple CaLMs, lacking pathogenic/likely pathogenic NF1 and SPRED1 variants, underwent RASopathy gene panel sequencing. Data on 125 individuals with heterozygous LZTR1 variants were collected for characterizing their clinical features and the associated molecular spectrum. In vitro functional assessment was performed on a representative panel of missense variants and small in-frame deletions. RESULTS: Analysis revealed heterozygous LZTR1 variants in 6.0% (51/849) of participants, exceeding the general population prevalence. LZTR1-related CaLMs varied in number, displayed sharp or irregular borders, and were generally isolated but occasionally associated with features recurring in RASopathies. In 2 families, CaLMs and schwannomas co-occurred. The molecular spectrum mainly consisted of truncating variants, indicating loss-of-function. These variants substantially overlapped with those occurring in schwannomatosis and recessive NS. Functional characterization showed accelerated protein degradation or mislocalization, and failure to downregulate mitogen-activated protein kinase signaling. CONCLUSION: Our findings expand the phenotypic variability associated with LZTR1 variants, which, in addition to conferring susceptibility to schwannomatosis and causing dominant and recessive NS, occur in individuals with isolated multiple CaLMs.
RESUMO
We describe a case of collodion baby diagnosed prenatally by ultrasound. Classic signs (ectropion, flattened nose, and eclabion) were detected on routine ultrasound at 21 weeks of gestation. At birth, the presence of collodion membrane was confirmed and subsequently, the diagnosis of an autosomal recessive congenital ichthyosis due to compound heterozygosity of the TGM1 gene was made.
Assuntos
Transglutaminases , Ultrassonografia Pré-Natal , Humanos , Transglutaminases/genética , Feminino , Gravidez , Recém-Nascido , Ictiose Lamelar/genética , Adulto , Genes RecessivosRESUMO
We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients' fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.
Assuntos
Ataxia/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Dinâmica Mitocondrial/fisiologia , Doenças Musculares/genética , Mutação/genética , Ataxia/etiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Dinâmica Mitocondrial/genética , Doenças Musculares/etiologiaRESUMO
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17-74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.
Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Pais , Cromossomos em Anel , Deleção de Sequência/genética , Translocação Genética , Adulto JovemRESUMO
Interstitial chromosome 15q11-q13 duplications are associated with developmental delay, behavioral problems and additional manifestations, including epilepsy. In most affected individuals the duplicated chromosome is maternally derived, whereas paternal inheritance is more often associated with a normal phenotype. Seizures have not been described in patients with paternal dup 15q11-q13. We describe a family with five individuals in three generations with a paternally-inherited 15q11-q13 duplication, four of whom exhibited abnormal phenotypic characteristics, including seizures. The 18-year-old female proband presented with moderate intellectual disability, obesity, and epilepsy. Her brother manifested learning disability and behavioral problems. They both inherited the 15q11-q13 dup from their father who had a normal phenotype. Their paternal uncle and grandfather also had the duplication and were reported to have had seizures. Array-CGH and MLPA analyses showed that the duplication included the TUBGCP5, CYFIP1, MKRN3, MAGEL2, NDN, SNRPN, UBE3A, ATP10A, GABRB3, GABRA5, GABRG3, and OCA2 genes. This report provides evidence for intrafamilial phenotypic variability of paternal dup 15q11-q13, ranging from normal to intellectual disability and seizures, and potentially expanding the phenotype of paternal 15q11-q13 interstitial duplications.
Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Convulsões/genética , Adolescente , Adulto , Idoso , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/diagnóstico , Feminino , Impressão Genômica/genética , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Cariotipagem , Deficiências da Aprendizagem/diagnóstico , Masculino , Pessoa de Meia-Idade , Fenótipo , Convulsões/diagnósticoRESUMO
X-linked ocular albinism type 1 (OA1) is caused by mutations in G protein-coupled receptor 143 (GPR143) gene, which encodes a membrane glycoprotein localized to melanosomes. GPR143 mainly affects pigment production in the eye, resulting in optic changes associated with albinism, including hypopigmentation of the retina, nystagmus, strabismus, foveal hypoplasia, abnormal crossing of the optic fibers, and reduced visual acuity. We report the mutational analysis of the GPR143 gene on two unrelated families with OA1 using direct sequencing and real-time quantitative polymerase chain reaction. We identified the c.564_565delCT, a 2-bp deletion in family 1, and we mapped the breakpoints at nucleotide level of the novel intragenic deletion g.5360_6371del1012, encompassing exon 2, in family 2. Our results confirm that GPR143 is the major locus for OA1 and that exon 2 is a region of high susceptibility to deletions. Finally, we emphasize the quantitative polymerase chain reaction as a valid tool for diagnosis of deletions in the GPR143 gene.