Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38838667

RESUMO

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.

2.
Nat Rev Mol Cell Biol ; 22(4): 283-298, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33564154

RESUMO

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Cromossomos/metabolismo , DNA/metabolismo , Humanos , Telomerase/metabolismo
3.
Cell ; 175(1): 14-17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30217358

RESUMO

This year's Lasker-Koshland Special Achievement Award is given to Joan Argetsinger Steitz for her RNA research discoveries and her exemplary international leadership.


Assuntos
RNA/metabolismo , RNA/fisiologia , Distinções e Prêmios , Pesquisa Biomédica , História do Século XXI , Humanos , RNA/história , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/fisiologia
4.
Cell ; 166(5): 1188-1197.e9, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27523609

RESUMO

Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end.


Assuntos
Telomerase/metabolismo , Telômero/enzimologia , Transporte Ativo do Núcleo Celular , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Linhagem Celular , Núcleo Celular/enzimologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corpos Enovelados/enzimologia , Endonucleases , Edição de Genes , Genoma Humano , Células HeLa , Humanos , Imageamento Tridimensional , Domínios Proteicos , Fase S , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Complexo Shelterina , Telomerase/química , Telômero/química , Homeostase do Telômero , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
5.
Cell ; 165(5): 1267-1279, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27180905

RESUMO

RNA has the intrinsic property to base pair, forming complex structures fundamental to its diverse functions. Here, we develop PARIS, a method based on reversible psoralen crosslinking for global mapping of RNA duplexes with near base-pair resolution in living cells. PARIS analysis in three human and mouse cell types reveals frequent long-range structures, higher-order architectures, and RNA-RNA interactions in trans across the transcriptome. PARIS determines base-pairing interactions on an individual-molecule level, revealing pervasive alternative conformations. We used PARIS-determined helices to guide phylogenetic analysis of RNA structures and discovered conserved long-range and alternative structures. XIST, a long noncoding RNA (lncRNA) essential for X chromosome inactivation, folds into evolutionarily conserved RNA structural domains that span many kilobases. XIST A-repeat forms complex inter-repeat duplexes that nucleate higher-order assembly of the key epigenetic silencing protein SPEN. PARIS is a generally applicable and versatile method that provides novel insights into the RNA structurome and interactome. VIDEO ABSTRACT.


Assuntos
Ficusina/química , RNA de Cadeia Dupla/química , Animais , Pareamento de Bases , Células HEK293 , Células HeLa , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , RNA Longo não Codificante/química
6.
Mol Cell ; 83(3): 320-323, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736305

RESUMO

The Central Dogma has been a useful conceptualization of the transfer of genetic information, and our understanding of the detailed mechanisms involved in that transfer continues to evolve. Here, we speak to several scientists about their research, how it influences our understanding of information transfer, and questions for the future.

7.
Annu Rev Biochem ; 84: 355-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25494299

RESUMO

Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis.


Assuntos
Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Reparo do DNA , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Processamento Pós-Transcricional do RNA , Proteína FUS de Ligação a RNA/química , Proteínas de Ligação a RNA/química , Fatores Associados à Proteína de Ligação a TATA/química , Transcrição Gênica
8.
Cell ; 157(1): 77-94, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24679528

RESUMO

Noncoding RNAs (ncRNAs) accomplish a remarkable variety of biological functions. They regulate gene expression at the levels of transcription, RNA processing, and translation. They protect genomes from foreign nucleic acids. They can guide DNA synthesis or genome rearrangement. For ribozymes and riboswitches, the RNA structure itself provides the biological function, but most ncRNAs operate as RNA-protein complexes, including ribosomes, snRNPs, snoRNPs, telomerase, microRNAs, and long ncRNAs. Many, though not all, ncRNAs exploit the power of base pairing to selectively bind and act on other nucleic acids. Here, we describe the pathway of ncRNA research, where every established "rule" seems destined to be overturned.


Assuntos
RNA não Traduzido/química , RNA não Traduzido/metabolismo , Animais , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Genoma , Humanos , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
9.
Mol Cell ; 81(3): 488-501.e9, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33338397

RESUMO

Polycomb repressive complex 2 (PRC2) silences expression of developmental transcription factors in pluripotent stem cells by methylating lysine 27 on histone H3. Two mutually exclusive subcomplexes, PRC2.1 and PRC2.2, are defined by the set of accessory proteins bound to the core PRC2 subunits. Here we introduce separation-of-function mutations into the SUZ12 subunit of PRC2 to drive it into a PRC2.1 or 2.2 subcomplex in human induced pluripotent stem cells (iPSCs). We find that PRC2.2 occupies polycomb target genes at low levels and that homeobox transcription factors are upregulated when this complex is exclusively present. In contrast with previous studies, we find that chromatin occupancy of PRC2 increases drastically when it is forced to form PRC2.1. Additionally, several cancer-associated mutations also coerce formation of PRC2.1. We suggest that PRC2 chromatin occupancy can be altered in the context of disease or development by tuning the ratio of PRC2.1 to PRC2.2.


Assuntos
Cromatina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Ligação Competitiva , Cromatina/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação , Proteínas de Neoplasias/genética , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Fatores de Transcrição/genética
11.
Nature ; 608(7924): 819-825, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831508

RESUMO

Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins1. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells2. This replication requires telomerase3 extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)n); the synthesis of the complementary C-strand ((CCCTAA)n) is much less well characterized. The CST (CTC1-STN1-TEN1) protein complex, a DNA polymerase α-primase accessory factor4,5, is known to be required for telomere replication in vivo6-9, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST-Polα-primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3' overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension10,11 and recruits Polα-primase to telomeric ssDNA4,12,13 but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.


Assuntos
Replicação do DNA , Replicon , Complexo Shelterina , Telômero , DNA Primase/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Quadruplex G , Humanos , Replicon/genética , Complexo Shelterina/genética , Complexo Shelterina/metabolismo , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
12.
Cell ; 148(5): 922-32, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22365814

RESUMO

In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in vitro and in vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Deleção de Sequência , Telomerase/química , Telômero/genética
13.
Genes Dev ; 33(19-20): 1416-1427, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488576

RESUMO

Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that is critical for regulating transcriptional repression in mammals. Its catalytic subunit, EZH2, is responsible for the trimethylation of H3K27 and also undergoes automethylation. Using mass spectrometry analysis of recombinant human PRC2, we identified three methylated lysine residues (K510, K514, and K515) on a disordered but highly conserved loop of EZH2. Methylation of these lysines increases PRC2 histone methyltransferase activity, whereas their mutation decreases activity in vitro. De novo histone methylation in an EZH2 knockout cell line is greatly impeded by mutation of the automethylation lysines. EZH2 automethylation occurs intramolecularly (in cis) by methylation of a pseudosubstrate sequence on a flexible loop. This posttranslational modification and cis regulation of PRC2 are analogous to the activation of many protein kinases by autophosphorylation. We propose that EZH2 automethylation allows PRC2 to modulate its histone methyltransferase activity by sensing histone H3 tails, SAM concentration, and perhaps other effectors.


Assuntos
Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica , Humanos , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
14.
RNA ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918043

RESUMO

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α -primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and they cause telomere shortening in human cells that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.

15.
RNA ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760076

RESUMO

Many transcription factors (TFs) have been shown to bind RNA, leading to open questions regarding the mechanism(s) of this RNA binding and its role in regulating TF activities. Here we use biophysical assays to interrogate the kon, koff, and Kd for DNA and RNA binding of two model human transcription factors, ERα and Sox2. Unexpectedly, we found that both proteins exhibited multiphasic nucleic acid binding kinetics. We propose that Sox2 RNA and DNA multiphasic binding kinetics could be explained by a conventional model for sequential Sox2 monomer association and dissociation. In contrast, ERα nucleic acid binding exhibited biphasic dissociation paired with novel triphasic association behavior, where two apparent binding transitions are separated by a 10-20 min "lag" phase depending on protein concentration. We considered several conventional models for the observed kinetic behavior, none of which adequately explained all the ERα nucleic acid binding data. Instead, simulations with a model incorporating sequential ERα monomer association, ERα nucleic acid complex isomerization, and product "feedback" on isomerization rate recapitulated the general kinetic trends for both ERα DNA and RNA binding. Collectively, our findings reveal that Sox2 and ERα bind RNA and DNA with previously unappreciated multiphasic binding kinetics, and that their reaction mechanisms differ with ERα binding nucleic acids via a novel reaction mechanism.

16.
Proc Natl Acad Sci U S A ; 120(26): e2220537120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339225

RESUMO

We previously demonstrated that the polycomb repressive complex 2 chromatin-modifying enzyme can directly transfer between RNA and DNA without a free-enzyme intermediate state. Simulations suggested that such a direct transfer mechanism may be generally necessary for RNA to recruit proteins to chromatin, but the prevalence of direct transfer capability is unknown. Herein, we used fluorescence polarization assays and observed direct transfer for several well-characterized nucleic acid-binding proteins: three-prime repair exonuclease 1, heterogeneous nuclear ribonucleoprotein U, Fem-3-binding factor 2, and MS2 bacteriophage coat protein. For TREX1, the direct transfer mechanism was additionally observed in single-molecule assays, and the data suggest that direct transfer occurs through an unstable ternary intermediate with partially associated polynucleotides. Generally, direct transfer could allow many DNA- and RNA-binding proteins to conduct a one-dimensional search for their target sites. Furthermore, proteins that bind both RNA and DNA might be capable of readily translocating between those ligands.


Assuntos
Proteínas de Ligação a DNA , Polinucleotídeos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , DNA/metabolismo , Cromatina
17.
Proc Natl Acad Sci U S A ; 120(23): e2220528120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252986

RESUMO

The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.


Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Cromatina/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA/genética , RNA/metabolismo , DNA/genética , DNA/metabolismo , Nucleossomos/genética , Ligação Proteica
18.
Genes Dev ; 32(11-12): 794-805, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29891558

RESUMO

Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that promotes epigenetic gene silencing, but the dynamics of its interactions with chromatin are largely unknown. Here we quantitatively measured the binding of PRC2 to chromatin in human cancer cells. Genome editing of a HaloTag into the endogenous EZH2 and SUZ12 loci and single-particle tracking revealed that ∼80% of PRC2 rapidly diffuses through the nucleus, while ∼20% is chromatin-bound. Short-term treatment with a small molecule inhibitor of the EED-H3K27me3 interaction had no immediate effect on the chromatin residence time of PRC2. In contrast, separation-of-function mutants of SUZ12, which still form the core PRC2 complex but cannot bind accessory proteins, revealed a major contribution of AEBP2 and PCL homolog proteins to chromatin binding. We therefore quantified the dynamics of this chromatin-modifying complex in living cells and separated the contributions of H3K27me3 histone marks and various PRC2 subunits to recruitment of PRC2 to chromatin.


Assuntos
Cromatina/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Subunidades Proteicas/metabolismo , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Edição de Genes , Células HEK293 , Humanos , Indanos/farmacologia , Proteínas de Neoplasias , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Sulfonamidas/farmacologia , Fatores de Transcrição
19.
RNA ; 29(3): 346-360, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574982

RESUMO

Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Conformação de Ácido Nucleico , RNA , Humanos , Cromatina/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , RNA/genética , RNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
20.
Nat Rev Mol Cell Biol ; 14(2): 69-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299958

RESUMO

Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins, including TPP1 in humans, Ccq1 in Schizosaccharomyces pombe and Cdc13 and Ku70-Ku80 in Saccharomyces cerevisiae.


Assuntos
Cromossomos/química , Telomerase/metabolismo , Telômero/metabolismo , Animais , Cromossomos/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Complexo Shelterina , Telômero/química , Telômero/genética , Proteínas de Ligação a Telômeros
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa