Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Virol J ; 20(1): 43, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879270

RESUMO

Zika virus (ZIKV) infection is a major public health threat, making the study of its biology a matter of great importance. By analyzing the viral-host protein interactions, new drug targets may be proposed. In this work, we showed that human cytoplasmic dynein-1 (Dyn) interacts with the envelope protein (E) of ZIKV. Biochemical evidence indicates that the E protein and the dimerization domain of the heavy chain of Dyn binds directly without dynactin or any cargo adaptor. Analysis of this interactions in infected Vero cells by proximity ligation assay suggest that the E-Dyn interaction is dynamic and finely tuned along the replication cycle. Altogether, our results suggest new steps in the replication cycle of the ZIKV for virion transport and indicate a suitable molecular target to modulate infection by ZIKV.


Assuntos
Infecção por Zika virus , Zika virus , Chlorocebus aethiops , Humanos , Animais , Dineínas do Citoplasma , Células Vero , Transporte Biológico
2.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682832

RESUMO

The current obesity pandemic has been expanding in both developing and developed countries. This suggests that the factors contributing to this condition need to be reconsidered since some new factors are arising as etiological causes of this disease. Moreover, recent clinical and experimental findings have shown an association between the progress of obesity and some infections, and the functions of adipose tissues, which involve cell metabolism and adipokine release, among others. Furthermore, it has recently been reported that adipocytes could either be reservoirs for these pathogens or play an active role in this process. In addition, there is abundant evidence indicating that during obesity, the immune system is exacerbated, suggesting an increased susceptibility of the patient to the development of several forms of illness or death. Thus, there could be a relationship between infection as a trigger for an increase in adipose cells and the impact on the metabolism that contributes to the development of obesity. In this review, we describe the findings concerning the role of adipose tissue as a mediator in the immune response as well as the possible role of adipocytes as infection targets, with both roles constituting a possible cause of obesity.


Assuntos
Adipócitos , Tecido Adiposo , Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Humanos , Imunidade , Obesidade/etiologia
3.
J Immunol ; 202(4): 1239-1249, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626693

RESUMO

A single layer of polarized epithelial cells lining the colonic mucosa create a semipermeable barrier indispensable for gut homeostasis. The role of intestinal epithelial cell (IEC) polarization in the maintenance of the epithelial homeostasis and in the development of inflammatory bowel diseases is not fully understood. In this review, now we report that IEC polarization plays an essential role in the regulation of IL-6/STAT3 signaling in the colonic mucosa. Our results demonstrate that autocrine STAT3 activation in IECs is mediated by the apical secretion of IL-6 in response to the basolateral stimulation with IFN-γ. This process relies on the presence of functional, IFN-γ-producing CD4+ T cells. In the absence of basolateral IFN-γ, the compartmentalization of the IL-6/STAT3 signaling is disrupted, and STAT3 is activated mainly in macrophages. Thus, in this study, we show that during inflammation, IFN-γ regulates IL-6/STAT3 signaling in IEC in the colonic mucosa.


Assuntos
Colite/metabolismo , Colo/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Células CACO-2 , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Protein Expr Purif ; 162: 38-43, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31112759

RESUMO

The envelope (E) protein from Dengue and Zika viruses comprises three functional and structural domains (DI, DII, and DIII). Domain III induces most of the neutralizing antibodies and, as such, is considered as having the highest antigenic potential for the evaluation of population-level surveillance and for detecting past infections in both Dengue and Zika patients. The present study aimed to clone and express recombinant proteins of domain III from Dengue virus serotype 2 and from Zika virus in a prokaryotic system, as well as evaluate their immunogenicity and cross-reactivity. Both antigens were successfully purified and their antigenicity was assessed in mice. The antibodies elicited by domain III of Zika and Dengue virus antigens recognized specifically the native proteins in infected cells. Furthermore, the antigens showed a more specific immunogenic response than that of domain III proteins from Dengue virus. The generated recombinant proteins can be potentially used in subunit vaccines or for surveillance studies.


Assuntos
Vírus da Dengue/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação , Zika virus/genética , Animais , Anticorpos Antivirais/imunologia , Reações Cruzadas , Dengue/imunologia , Dengue/prevenção & controle , Dengue/virologia , Vacinas contra Dengue , Vírus da Dengue/química , Vírus da Dengue/imunologia , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Zika virus/química , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
5.
Virol J ; 13: 1, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728778

RESUMO

BACKGROUND: One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. METHODS: We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. RESULTS: The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. CONCLUSIONS: Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Vírus da Dengue/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas não Estruturais Virais/farmacologia , Sequência de Aminoácidos , Vírus da Dengue/genética , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação
6.
Clin Immunol ; 160(2): 163-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26117626

RESUMO

NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females.


Assuntos
Displasia Ectodérmica/genética , Família , Quinase I-kappa B/genética , Síndromes de Imunodeficiência/genética , Incontinência Pigmentar/genética , Púrpura Trombocitopênica Idiopática/genética , Ubiquitinação/genética , Adolescente , Adulto , Displasia Ectodérmica/imunologia , Feminino , Heterozigoto , Humanos , Quinase I-kappa B/imunologia , Síndromes de Imunodeficiência/imunologia , Incontinência Pigmentar/imunologia , Masculino , Mutação de Sentido Incorreto , Púrpura Trombocitopênica Idiopática/imunologia , Ubiquitinação/imunologia
7.
J Immunol Res ; 2024: 9313267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939745

RESUMO

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Humanos , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Imunogenicidade da Vacina , Animais , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Epitopos de Linfócito T/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo/imunologia
8.
Viruses ; 16(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543711

RESUMO

Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.


Assuntos
Proteínas Viroporinas , Vírus , Proteínas Viroporinas/metabolismo , Proteínas Virais/metabolismo , Canais Iônicos/metabolismo , Imunidade Inata
9.
Diseases ; 12(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534983

RESUMO

In mammals, the placenta is a connection between a mother and a new developing organism. This tissue has a protective function against some microorganisms, transports nutrients, and exchanges gases and excretory substances between the mother and the fetus. Placental tissue is mainly composed of chorionic villi functional units called trophoblasts (cytotrophoblasts, the syncytiotrophoblast, and extravillous trophoblasts). However, some viruses have developed mechanisms that help them invade the placenta, causing various conditions such as necrosis, poor perfusion, and membrane rupture which, in turn, can impact the development of the fetus and put the mother's health at risk. In this study, we collected the most relevant information about viral infection during pregnancy which can affect both the mother and the fetus, leading to an increase in the probability of vertical transmission. Knowing these mechanisms could be relevant for new research in the maternal-fetal context and may provide options for new therapeutic targets and biomarkers in fetal prognosis.

10.
ScientificWorldJournal ; 2013: 904067, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24302878

RESUMO

An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.


Assuntos
Vírus da Dengue/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Adolescente , Encéfalo/virologia , Criança , Vírus da Dengue/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Imunoprecipitação , Técnicas In Vitro , Masculino , Ligação Proteica
11.
Vaccines (Basel) ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112776

RESUMO

Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.

12.
Hum Mol Genet ; 19(14): 2877-85, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20418488

RESUMO

It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , HDL-Colesterol/sangue , Indígenas Norte-Americanos/genética , Seleção Genética , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Adulto , Alelos , HDL-Colesterol/genética , Feminino , Frequência do Gene , Genética Populacional , Estudo de Associação Genômica Ampla , Geografia , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino
13.
ACS Omega ; 7(35): 30756-30767, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092630

RESUMO

The COVID-19 pandemic has caused major disturbances to human health and economy on a global scale. Although vaccination campaigns and important advances in treatments have been developed, an early diagnosis is still crucial. While PCR is the golden standard for diagnosing SARS-CoV-2 infection, rapid and low-cost techniques such as ATR-FTIR followed by multivariate analyses, where dimensions are reduced for obtaining valuable information from highly complex data sets, have been investigated. Most dimensionality reduction techniques attempt to discriminate and create new combinations of attributes prior to the classification stage; thus, the user needs to optimize a wealth of parameters before reaching reliable and valid outcomes. In this work, we developed a method for evaluating SARS-CoV-2 infection and COVID-19 disease severity on infrared spectra of sera, based on a rather simple feature selection technique (correlation-based feature subset selection). Dengue infection was also evaluated for assessing whether selectivity toward a different virus was possible with the same algorithm, although independent models were built for both viruses. High sensitivity (94.55%) and high specificity (98.44%) were obtained for assessing SARS-CoV-2 infection with our model; for severe COVID-19 disease classification, sensitivity is 70.97% and specificity is 94.95%; for mild disease classification, sensitivity is 33.33% and specificity is 94.64%; and for dengue infection assessment, sensitivity is 84.27% and specificity is 94.64%.

14.
Front Cell Infect Microbiol ; 12: 890750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800385

RESUMO

Dengue and Zika viruses cocirculate annually in endemic areas of Mexico, causing outbreaks of different magnitude and severity every year, suggesting a continuous selection of Flavivirus variants with variable phenotypes of transmissibility and virulence. To evaluate if Flavivirus variants with different phenotypes cocirculate during outbreaks, we isolated dengue and Zika viruses from blood samples of febrile patients from Oaxaca City during the 2016 and 2019 epidemic years. We compared their replication kinetics in human cells, susceptibility to type I interferon antiviral response, and the accumulation of subgenomic RNA on infected cells. We observed correlations between type I interferon susceptibility and subgenomic RNA accumulation, with high hematocrit percentage and thrombocytopenia. Our results suggest that Flaviviruses that cocirculate in Oaxaca, Mexico, have variable sensitivity to the antiviral activity of type I interferons, and this phenotypic trait correlates with the severity of the disease.


Assuntos
Dengue , Flavivirus , Interferon Tipo I , Infecção por Zika virus , Zika virus , Antivirais , Flavivirus/genética , Humanos , México/epidemiologia , RNA Viral/genética , Índice de Gravidade de Doença , Replicação Viral , Zika virus/genética
15.
J Leukoc Biol ; 111(6): 1147-1158, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34826347

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Metaloproteinases da Matriz , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
16.
Microorganisms ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203931

RESUMO

A common hallmark of dengue infections is the dysfunction of the vascular endothelium induced by different biological mechanisms. In this paper, we studied the role of recombinant NS1 proteins representing the four dengue serotypes, and their role in promoting the expression and release of endocan, which is a highly specific biomarker of endothelial cell activation. We evaluated mRNA expression and the levels of endocan protein in vitro following the stimulation of HUVEC and HMEC-1 cell lines with recombinant NS1 proteins. NS1 proteins increase endocan mRNA expression 48 h post-activation in both endothelial cell lines. Endocan mRNA expression levels were higher in HUVEC and HMEC-1 cells stimulated with NS1 proteins than in non-stimulated cells (p < 0.05). A two-fold to three-fold increase in endocan protein release was observed after the stimulation of HUVECs or HMEC-1 cells with NS1 proteins compared with that in non-stimulated cells (p < 0.05). The blockade of Toll-like receptor 4 (TLR-4) signaling on HMEC-1 cells with an antagonistic antibody prevented NS1-dependent endocan production. Dengue-infected patients showed elevated serum endocan levels (≥30 ng/mL) during early dengue infection. High endocan serum levels were associated with laboratory abnormalities, such as lymphopenia and thrombocytopenia, and are associated with the presence of NS1 in the serum.

17.
Front Cell Dev Biol ; 9: 625719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012961

RESUMO

The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.

18.
J Immunol Res ; 2021: 5511841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997054

RESUMO

Dengue is a worldwide expanding threat caused by dengue virus (DENV) infection. To date, no specific treatment or effective vaccine is available. Antibodies produced by plasma cells (PCs) might be involved concomitantly in protection and severe dengue immunopathology. Although a massive appearance of PCs has been reported during acute DENV infection in humans, this response has been poorly characterized. Here, we show the dynamic of PC generation in immune-competent mice cutaneously inoculated with DENV compared with two control experimental groups: mice inoculated with inactivated DENV or with PBS. We found that PC numbers increased significantly in the skin-draining lymph node (DLN), peaking at day 10 and abruptly decreasing by day 14 after DENV inoculation. Class-switched IgG+ PCs appeared from day 7 and dominated the response, while in contrast, the frequency of IgM+ PCs decreased from day 7 onwards. Even though the kinetic of the response was similar between DENV- and iDENV-inoculated mice, the intensity of the response was significantly different. Interestingly, we demonstrated a similar PC response to virus antigens (E and prM) by ELISPOT. In situ characterization showed that PCs were distributed in the medullary cords and in close proximity to germinal centers (GCs), suggesting both an extrafollicular and a GC origin. Proliferating PCs (Ki-67+) were found as early as 3-day postinoculation, and in-depth analysis showed that these PCs were in active phases of cell cycle during the kinetic. Finally, we found a progressive appearance of high-affinity neutralizing DENV-specific IgG further supporting GC involvement. Of note, these antibodies seem to be highly cross-reactive, as a large proportion recognizes Zika virus (ZIKV). The strong PC response to skin-inoculated DENV in this work resembles the findings already described in humans. We consider that this study contributes to the understanding of the in vivo biology of the humoral immune response to DENV in an immunocompetent murine model.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Plasmócitos/imunologia , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/análise , Anticorpos Antivirais/metabolismo , Reações Cruzadas , Dengue/patologia , Dengue/virologia , Modelos Animais de Doenças , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Masculino , Camundongos , Plasmócitos/metabolismo , Pele/imunologia , Pele/patologia , Pele/virologia , Organismos Livres de Patógenos Específicos , Zika virus/imunologia
19.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679506

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.

20.
Arch Virol ; 155(6): 847-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20390312

RESUMO

A DENV-2 plasmid named pEII*EIII/NS1*,containing sequences encoding portions of the envelope protein that are potentially involved in the induction of neutralizing antibodies and a portion of the NS1 sequence that is involved in protection, is reported in this work. The synthesized subunit protein was recognized by human sera from infected patients and had the predicted size. The immunogenicity of this construct was evaluated using a mouse model in a prime-boost vaccination approach. The priming was performed using the plasmid pEII*EIII/NS1*, followed by a boost with recombinant full-length GST-E and GST-NS1 fusion proteins. The mice showed specific antibody responses to the E and NS1 proteins, as detected by ELISA, compared to the response of animals vaccinated with the parental plasmid. Interestingly, some animals had neutralizing antibodies. These results show that EII*, EIII and NS1* sequences could be considered for the design ofa recombinant subunit vaccine against dengue disease.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/imunologia , Plasmídeos/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Dengue/virologia , Vacinas contra Dengue/genética , Vacinas contra Dengue/imunologia , Modelos Animais de Doenças , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Vacinação , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa