Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 146(10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097434

RESUMO

Mediator is a large multiprotein complex that is required for the transcription of most, if not all, genes transcribed by RNA Polymerase II. A core set of subunits is essential to assemble a functional Mediator in vitro and, therefore, the corresponding loss-of-function mutants are expected to be lethal. The MED30 subunit is essential in animal systems, but is absent in yeast. Here, we report that MED30 is also essential for both male gametophyte and embryo development in the model plant Arabidopsis thaliana Mutant med30 pollen grains were viable and some were able to germinate and target the ovules, although the embryos aborted shortly after fertilization, suggesting that MED30 is important for the paternal control of early embryo development. When gametophyte defects were bypassed by specific pollen complementation, loss of MED30 led to early embryo development arrest. Later in plant development, MED30 promotes flowering through multiple signaling pathways; its downregulation led to a phase change delay, downregulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3), FLOWERING LOCUS T (FTI) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and upregulation of FLOWERING LOCUS C (FLC).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Integr Plant Biol ; 64(2): 205-214, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761872

RESUMO

Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.


Assuntos
Medicago sativa , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Medicago sativa/genética , Fenótipo , Poliploidia , Tetraploidia
3.
Plant J ; 97(5): 923-932, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468542

RESUMO

Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very-SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very-SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long-standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/fisiologia , Fotoperíodo , Fatores de Transcrição/genética
4.
Plant J ; 99(1): 7-22, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924988

RESUMO

Shade-intolerant plants respond to the decrease in the red (R) to far-red (FR) light ratio (R:FR) occurring under shade by elongating stems and petioles and by re-positioning leaves, in a race to outcompete neighbors for the sunlight resource. In some annual species, the shade avoidance syndrome (SAS) is accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR light. Low R:FR light produced a classical SAS, with increased internode and petiole lengths, but unexpectedly also with delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. The SAS is likely to be mediated by increased expression of msPIF3 and msHB2 in low R:FR light. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting that their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under suboptimal light conditions, and thus assure the accumulation of reserves necessary to resume growth after the next season.


Assuntos
Flores/fisiologia , Luz , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago sativa/metabolismo , Medicago sativa/fisiologia
5.
Plant Biotechnol J ; 18(4): 944-954, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31536663

RESUMO

Alfalfa (Medicago sativa L.) is one of the most important forage crops worldwide. As a perennial, alfalfa is cut several times each year. Farmers face a dilemma: if cut earlier, forage nutritive value is much higher but regrowth is affected and the longevity of the stand is severely compromised. On the other hand, if alfalfa is cut later at full flower, stands persist longer and more biomass may be harvested, but the nutritive value diminishes. Alfalfa is a strict long-day plant. We reasoned that by manipulating the response to photoperiod, we could delay flowering to improve forage quality and widen each harvesting window, facilitating management. With this aim, we functionally characterized the FLOWERING LOCUS T family of genes, represented by five members: MsFTa1, MsFTa2, MsFTb1, MsFTb2 and MsFTc. The expression of MsFTa1 correlated with photoperiodic flowering and its down-regulation led to severe delayed flowering. Altogether, with late flowering, low expression of MsFTa1 led to changes in plant architecture resulting in increased leaf to stem biomass ratios and forage digestibility. By manipulating photoperiodic flowering, we were able to improve the quality of alfalfa forage and management, which may allow farmers to cut alfalfa of high nutritive value without compromising stand persistence.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa/genética , Valor Nutritivo , Proteínas de Plantas/genética , Biomassa , Regulação para Baixo , Flores/fisiologia , Medicago sativa/química , Fotoperíodo
6.
Plant Physiol ; 178(1): 163-173, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30068539

RESUMO

Agricultural crops are exposed to a range of daylengths, which act as important environmental cues for the control of developmental processes such as flowering. To explore the additional effects of daylength on plant function, we investigated the transcriptome of Arabidopsis (Arabidopsis thaliana) plants grown under short days (SD) and transferred to long days (LD). Compared with that under SD, the LD transcriptome was enriched in genes involved in jasmonic acid-dependent systemic resistance. Many of these genes exhibited impaired expression induction under LD in the phytochrome A (phyA), cryptochrome 1 (cry1), and cry2 triple photoreceptor mutant. Compared with that under SD, LD enhanced plant resistance to the necrotrophic fungus Botrytis cinerea This response was reduced in the phyA cry1 cry2 triple mutant, in the constitutive photomorphogenic1 (cop1) mutant, in the myc2 mutant, and in mutants impaired in DELLA function. Plants grown under SD had an increased nuclear abundance of COP1 and decreased DELLA abundance, the latter of which was dependent on COP1. We conclude that growth under LD enhances plant defense by reducing COP1 activity and enhancing DELLA abundance and MYC2 expression.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Luz , Oxilipinas/metabolismo , Fotoperíodo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Botrytis/fisiologia , Criptocromos/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutação , Fitocromo A/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Transcriptoma/efeitos da radiação , Ubiquitina-Proteína Ligases/genética
7.
PLoS Genet ; 12(11): e1006413, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27820825

RESUMO

Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant's life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.


Assuntos
Apoproteínas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fitocromo B/genética , Fitocromo/genética , Apoproteínas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Genótipo , Germinação/genética , Luz , Fitocromo/metabolismo , Fitocromo A , Fitocromo B/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais/genética , Temperatura
8.
PLoS Genet ; 11(2): e1004975, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25693187

RESUMO

DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.


Assuntos
Arabidopsis/genética , DNA Polimerase III/genética , Replicação do DNA/genética , Epigênese Genética , Flores/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Domínio MADS , Folhas de Planta/genética , Fatores de Transcrição/biossíntese
9.
Nature ; 468(7320): 112-6, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20962777

RESUMO

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Sequência de Bases , Relógios Circadianos/genética , Ritmo Circadiano/genética , Escuridão , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Metilação , Mutação , Proteínas Circadianas Period/genética , Fenótipo , Proteínas Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Fatores de Transcrição/genética
11.
Annu Rev Plant Biol ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277699

RESUMO

Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly. Expected final online publication date for the Annual Review of Plant Biology, Volume 75 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

12.
Plant J ; 69(4): 601-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21985558

RESUMO

Two aspects of light are very important for plant development: the length of the light phase or photoperiod and the quality of incoming light. Photoperiod detection allows plants to anticipate the arrival of the next season, whereas light quality, mainly the red to far-red ratio (R:FR), is an early signal of competition by neighbouring plants. phyB represses flowering by antagonising CO at the transcriptional and post-translational levels. A low R:FR decreases active phyB and consequently increases active CO, which in turn activates the expression of FT, the plant florigen. Other phytochromes like phyD and phyE seem to have redundant roles with phyB. PFT1, the MED25 subunit of the plant Mediator complex, has been proposed to act in the light-quality pathway that regulates flowering time downstream of phyB. However, whether PFT1 signals through CO and its specific mechanism are unclear. Here we show that CO-dependent and -independent mechanisms operate downstream of phyB, phyD and phyE to promote flowering, and that PFT1 is equally able to promote flowering by modulating both CO-dependent and -independent pathways. Our data are consistent with the role of PFT1 as an activator of CO transcription, and also of FT transcription, in a CO-independent manner. Our transcriptome analysis is also consistent with CO and FT genes being the most important flowering targets of PFT1. Furthermore, comparison of the pft1 transcriptome with transcriptomes after fungal and herbivore attack strongly suggests that PFT1 acts as a hub, integrating a variety of interdependent environmental stimuli, including light quality and jasmonic acid-dependent defences.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Animais , Apoproteínas/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Botrytis/fisiologia , Borboletas/fisiologia , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/efeitos da radiação , Fusarium/fisiologia , Luz , Complexo Mediador/genética , Complexo Mediador/metabolismo , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Fotoperíodo , Fitocromo B/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Transdução de Sinais/fisiologia , Temperatura , Tisanópteros/fisiologia , Fatores de Transcrição/genética , Transcriptoma
13.
Plant Physiol ; 160(3): 1662-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22992513

RESUMO

The Mediator complex is a greater than 1-megadalton complex, composed of about 30 subunits and found in most eukaryotes, whose main role is to transmit signals from DNA-bound transcription factors to RNA Polymerase II. The proteasome is emerging as an important regulator of transcription during both initiation and elongation. It is increasing the number of cases where the proteolysis of transcriptional activators by the proteasome activates their function. This counterintuitive phenomenon was called "activation by destruction." Here, we show that, in Arabidopsis (Arabidopsis thaliana), PHYTOCHROME AND FLOWERING TIME1 (PFT1), the MEDIATOR25 (MED25) subunit of the plant Mediator complex, is degraded by the proteasome and that proteasome-mediated PFT1 turnover is coupled to its role in stimulating the transcription of FLOWERING LOCUS T, the plant florigen, which is involved in the process of flowering induction. We further identify two novel RING-H2 proteins that target PFT1 for degradation. We show that MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 bind to PFT1 in yeast (Saccharomyces cerevisiae) and in vitro, and they promote PFT1 degradation in vivo, in a RING-H2-dependent way, typical of E3 ubiquitin ligases. We further show that both MBR1 and MBR2 also promote flowering by PFT1-dependent and -independent mechanisms. Our findings extend the phenomenon of activation by destruction to a Mediator subunit, adding a new mechanism by which Mediator subunits may regulate downstream genes in specific pathways. Furthermore, we show that two novel RING-H2 proteins are involved in the destruction of PFT1, adding new players to this process in plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(10): 4776-81, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20176939

RESUMO

Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutação , Fitocromo/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Clorofila/metabolismo , Ritmo Circadiano , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Giberelinas/farmacologia , Luz , Morfogênese/efeitos dos fármacos , Morfogênese/efeitos da radiação , Fototropismo/efeitos dos fármacos , Fototropismo/efeitos da radiação , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
15.
Plant Reprod ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133696

RESUMO

KEY MESSAGE: MsTFL1A is an important gene involved in flowering repression in alfalfa (Medicago sativa) which conditions not only above-ground plant shoot architecture but also root development and growth. Delayed flowering is an important trait for forage species, as it allows harvesting of high-quality forage for a longer time before nutritional values decline due to plant architecture changes related to flowering onset. Despite the relevance of delayed flowering, this trait has not yet been thoroughly exploited in alfalfa. This is mainly due to its complex genetics, sensitivity to inbreeding and to the fact that delayed flowering would be only advantageous if it allowed increased forage quality without compromising seed production. To develop new delayed-flowering varieties, we have characterized the three TERMINAL FLOWERING 1 (TFL1) family of genes in alfalfa: MsTFL1A, MsTFL1B and MsTFL1C. Constitutive expression of MsTFL1A in Arabidopsis caused late flowering and changes in inflorescence architecture, indicating that MsTFL1A is the ortholog of Arabidopsis TFL1. Overexpression of MsTFL1A in alfalfa consistently led to delayed flowering in both controlled and natural field conditions, coupled to an increase in leaf/stem ratio, a common indicator of forage quality. Additionally, overexpression of MsTFL1A reduced root development, reinforcing the role of MsTFL1A not only as a flowering repressor but also as a regulator of root development.We conclude that the precise manipulation of MsTFL1A gene expression may represent a powerful tool to improve alfalfa forage quality.

16.
Nat Plants ; 9(4): 535-543, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914897

RESUMO

DELLA proteins are land-plant specific transcriptional regulators that transduce environmental information to multiple processes throughout a plant's life1-3. The molecular basis for this critical function in angiosperms has been linked to the regulation of DELLA stability by gibberellins and to the capacity of DELLA proteins to interact with hundreds of transcription factors4,5. Although bryophyte orthologues can partially fulfil functions attributed to angiosperm DELLA6,7, it is not clear whether the capacity to establish interaction networks is an ancestral property of DELLA proteins or is associated with their role in gibberellin signalling8-10. Here we show that representative DELLAs from the main plant lineages display a conserved ability to interact with multiple transcription factors. We propose that promiscuity was encoded in the ancestral DELLA protein, and that this property has been largely maintained, whereas the lineage-dependent diversification of DELLA-dependent functions mostly reflects the functional evolution of their interacting partners.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
17.
Proc Natl Acad Sci U S A ; 106(32): 13624-9, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666535

RESUMO

Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Homeodomínio/metabolismo , Luz , Fitocromo A/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Perfilação da Expressão Gênica , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos da radiação , Nicotiana , Fatores de Transcrição/genética
18.
Front Plant Sci ; 13: 952214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161012

RESUMO

Arabidopsis thaliana shows a wide range of natural genetic variation in light responses. Shade avoidance syndrome is a strategy of major adaptive significance that includes seed germination, elongation of vegetative structures, leaf hyponasty, and acceleration of flowering. Previously, we found that the southernmost Arabidopsis accession, collected in the south of Patagonia (Pat), is hyposensitive to light and displays a reduced response to shade light. This work aimed to explore the genetic basis of the shade avoidance response (SAR) for hypocotyl growth by QTL mapping in a recently developed 162 RIL population between Col-0 and Pat. We mapped four QTL for seedling hypocotyl growth: WL1 and WL2 QTL in white light, SHADE1 QTL in shade light, and SAR1 QTL for the SAR. PHYB is the strongest candidate gene for SAR1 QTL. Here we studied the function of two polymorphic indels in the promoter region, a GGGR deletion, and three non-synonymous polymorphisms on the PHYB coding region compared with the Col-0 reference genome. To decipher the contribution and relevance of each PHYB-Pat polymorphism, we constructed transgenic lines with single or double polymorphisms by using Col-0 as a reference genome. We found that single polymorphisms in the coding region of PHYB have discrete functions in seed germination, seedling development, and shade avoidance response. These results suggest distinct functions for each PHYB polymorphism to the adjustment of plant development to variable light conditions.

19.
Curr Opin Plant Biol ; 63: 102049, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975153

RESUMO

In seasonal flowering, plants need to monitor environmental variables. A combination of photoreceptors and the circadian clock initiate signals that regulate a network of genes in the leaf vascular system which communicates through mobile FLOWERING LOCUS T (FT) proteins, with the shoot apical meristem (SAM). At the SAM, a second network of genes is turned on specifically in certain cell domains, established by a second mobile protein, TERMINAL FLOWER 1 (TFL1), to ensure that flowering signals are translated into floral meristems at the flanks of the SAM but without compromising the nature of the SAM itself. Here, we provide an update on recent findings about the integration of light signals upstream of FT and tissue-specific events that occur in the SAM to balance flower production with SAM endurance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Fotoperíodo , Folhas de Planta/metabolismo
20.
Plant J ; 58(4): 629-40, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19187043

RESUMO

Plants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Sub-optimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one requiring TFL1 and another requiring ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants, which have a constitutive photoperiodic response. In contrast to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. Gene expression profiles revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes, and identified CCA1 and SOC1/AGL20 as being important cross-talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Fotoperíodo , RNA de Plantas/genética , Temperatura , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa