Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 102(1): 511, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29159584

RESUMO

After publication of the original article, authors found that there has been a minor mistake in the units of kcat and kcat/Km in Table 2. The units should be 103 min-1 g-1 FAE for kcat and mM-1 min-1 g-1 FAE for kcat/Km. This correction does not affect any conclusions drawn within the article.

2.
Appl Microbiol Biotechnol ; 102(12): 5185-5196, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687143

RESUMO

The chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity.


Assuntos
Antioxidantes/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular , Sordariales/enzimologia , Sordariales/genética , Ligação Proteica , Saccharomyces cerevisiae/genética
3.
Appl Microbiol Biotechnol ; 101(8): 3213-3226, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078397

RESUMO

Five feruloyl esterases (FAEs; EC 3.1.1.73), FaeA1, FaeA2, FaeB1, and FaeB2 from Myceliophthora thermophila C1 and MtFae1a from M. thermophila ATCC 42464, were tested for their ability to catalyze the transesterification of vinyl ferulate (VFA) with prenol in detergentless microemulsions. Reaction conditions were optimized investigating parameters such as the medium composition, the substrate concentration, the enzyme load, the pH, the temperature, and agitation. FaeB2 offered the highest transesterification yield (71.5 ± 0.2%) after 24 h of incubation at 30 °C using 60 mM VFA, 1 M prenol, and 0.02 mg FAE/mL in a mixture comprising of 53.4:43.4:3.2 v/v/v n-hexane:t-butanol:100 mM MOPS-NaOH, pH 6.0. At these conditions, the competitive side hydrolysis of VFA was 4.7-fold minimized. The ability of prenyl ferulate (PFA) and its corresponding ferulic acid (FA) to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was significant and similar (IC50 423.39 µM for PFA, 329.9 µM for FA). PFA was not cytotoxic at 0.8-100 µM (IC50 220.23 µM) and reduced intracellular reactive oxygen species (ROS) in human skin fibroblasts at concentrations ranging between 4 and 20 µM as determined with the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Pentanóis/metabolismo , Sordariales/enzimologia , Antioxidantes , Hidrolases de Éster Carboxílico/isolamento & purificação , Células Cultivadas , Ácidos Cumáricos/farmacologia , Emulsões , Esterificação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hemiterpenos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espécies Reativas de Oxigênio/metabolismo , Sordariales/metabolismo , Temperatura
4.
N Biotechnol ; 51: 14-20, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30685332

RESUMO

The need to develop competitive and eco-friendly processes in the cosmetic industry leads to the search for new enzymes with improved properties for industrial bioconversions in this sector. In the present study, a complete methodology to generate, express and screen diversity for the type C feruloyl esterase from Fusarium oxysporium FoFaeC was set up in a high-throughput fashion. A library of around 30,000 random mutants of FoFaeC was generated by error prone PCR of fofaec cDNA and expressed in Yarrowia lipolytica. Screening for enzymatic activity towards the substrates 5-bromo-4-chloroindol-3-yl and 4-nitrocatechol-1-yl ferulates allowed the selection of 96 enzyme variants endowed with improved enzymatic activity that were then characterized for thermo- and solvent- tolerance. The five best mutants in terms of higher activity, thermo- and solvent- tolerance were selected for analysis of substrate specificity. Variant L432I was shown to be able to hydrolyze all the tested substrates, except methyl sinapate, with higher activity than wild type FoFaeC towards methyl p-coumarate, methyl ferulate and methyl caffeate. Moreover, the E455D variant was found to maintain completely its hydrolytic activity after two hour incubation at 55 °C, whereas the L284Q/V405I variant showed both higher thermo- and solvent- tolerance than wild type FoFaeC. Small molecule docking simulations were applied to the five novel selected variants in order to examine the binding pattern of substrates used for enzyme characterization of wild type FoFaeC and the evolved variants.


Assuntos
Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Evolução Molecular Direcionada , Fusarium/enzimologia , Simulação de Acoplamento Molecular , Hidrolases de Éster Carboxílico/metabolismo , Reação em Cadeia da Polimerase
5.
PLoS One ; 13(5): e0198127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795702

RESUMO

The type C feruloyl esterase FoFaeC from Fusarium oxysporum is a newly discovered enzyme with high potential for use in the hydrolysis of lignocellulosic biomass but it shows low activity towards sinapates. In this work, small molecule docking simulations were employed in order to identify important residues for the binding of the four model methyl esters of hydroxycinnamic acids, methyl ferulate/caffeate/sinapate/p-coumarate, to the predicted structure of FoFaeC. Subsequently rational redesign was applied to the enzyme' active site in order to improve its specificity towards methyl sinapate. A double mutation (F230H/T202V) was considered to provide hydrophobic environment for stabilization of the methoxy substitution on sinapate and a larger binding pocket. Five mutant clones and the wild type were produced in Pichia pastoris and biochemically characterized. All clones showed improved activity, substrate affinity, catalytic efficiency and turnover rate compared to the wild type against methyl sinapate, with clone P13 showing a 5-fold improvement in catalytic efficiency. Although the affinity of all mutant clones was improved against the four model substrates, the catalytic efficiency and turnover rate decreased for the substrates containing a hydroxyl substitution.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Cinamatos/metabolismo , Desenho de Fármacos , Fusarium/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Catálise , Cinamatos/química , Fusarium/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Homologia de Sequência , Especificidade por Substrato
6.
Genome Announc ; 6(2)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326215

RESUMO

Here we present the draft genome sequence of the fungus Talaromyces adpressus A-T1C-84X (=CBS 142503). This strain was isolated from lignocellulosic biomass of Arundo donax during biodegradation under natural conditions in the Gussone Park of the Royal Palace of Portici, Naples, Italy.

7.
N Biotechnol ; 41: 9-14, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29174720

RESUMO

Feruloyl esterases (FAEs) are a diverse group of enzymes that specifically catalyze the hydrolysis of ester bonds between a hydroxycinnamic (e.g. ferulic) acid and plant poly- or oligosaccharides. FAEs as auxiliary enzymes significantly assist xylanolytic and pectinolytic enzymes in gaining access to their site of action during biomass saccharification for biofuel and biochemical production. A limited number of FAEs have been functionally characterized compared to over 1000 putative fungal FAEs that were recently predicted by similarity-based genome mining, which divided phylogenetically into different subfamilies (SFs). In this study, 27 putative and six characterized FAEs from both ascomycete and basidiomycete fungi were selected and heterologously expressed in Pichia pastoris and the recombinant proteins biochemically characterized to validate the previous genome mining and phylogenetical grouping and to expand the information on activity of fungal FAEs. As a result, 20 enzymes were shown to possess FAE activity, being active towards pNP-ferulate and/or methyl hydroxycinnamate substrates, and covering 11 subfamilies. Most of the new FAEs showed activities comparable to those of previously characterized fungal FAEs.


Assuntos
Hidrolases de Éster Carboxílico/genética , Mineração de Dados , Fungos/enzimologia , Genoma Fúngico , Hidrolases de Éster Carboxílico/metabolismo , Peso Molecular , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos Testes , Especificidade por Substrato
8.
N Biotechnol ; 40(Pt B): 282-287, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29051046

RESUMO

4-O-Methyl-d-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy. BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl d-glucuronate demonstrating the suitability of our genome mining strategy for enzyme discovery.


Assuntos
Esterases/metabolismo , Ácido Glucurônico/metabolismo , Pichia/enzimologia , Biologia Computacional , Esterases/química , Esterases/genética , Ácido Glucurônico/química , Ácido Glucurônico/genética , Conformação Molecular
9.
Mycologia ; 110(2): 316-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843575

RESUMO

A novel fungal species able to synthesize enzymes with potential synergistic actions in lignocellulose conversion was isolated from the biomass of Arundo donax during biodegradation under natural conditions in the Gussone Park of the Royal Palace of Portici (Naples, Italy). In this work, this species was subjected to morphological and phylogenetic analyses. Sequencing of its genome was performed, resulting in 28 scaffolds that were assembled into 27.05 Mb containing 9744 predicted genes, among which 396 belong to carbohydrate-active enzyme (CAZyme)-encoding genes. Here we describe and illustrate this previously unknown species, which was named Talaromyces borbonicus, by a polyphasic approach combining phenotypic, physiological, and sequence data.


Assuntos
Lignina/metabolismo , Poaceae/microbiologia , Talaromyces/classificação , Talaromyces/isolamento & purificação , Biotransformação , Metabolismo dos Carboidratos , Enzimas/genética , Genoma Fúngico , Itália , Filogenia , Análise de Sequência de DNA , Talaromyces/genética , Talaromyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa