Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(9): 094801, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750158

RESUMO

When a femtosecond duration and hundreds of kiloampere peak current electron beam traverses the vacuum and high-density plasma interface, a new process, that we call relativistic transition radiation (RTR), generates an intense ∼100 as pulse containing ∼1 terawatt power of coherent vacuum ultraviolet (VUV) radiation accompanied by several smaller femtosecond duration satellite pulses. This pulse inherits the radial polarization of the incident beam field and has a ring intensity distribution. This RTR is emitted when the beam density is comparable to the plasma density and the spot size much larger than the plasma skin depth. Physically, it arises from the return current or backward relativistic motion of electrons starting just inside the plasma that Doppler up shifts the emitted photons. The number of RTR pulses is determined by the number of groups of plasma electrons that originate at different depths within the first plasma wake period and emit coherently before phase mixing.

2.
Sci Rep ; 14(1): 7267, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538610

RESUMO

X-ray free-electron lasers are sources of coherent, high-intensity X-rays with numerous applications in ultra-fast measurements and dynamic structural imaging. Due to the stochastic nature of the self-amplified spontaneous emission process and the difficulty in controlling injection of electrons, output pulses exhibit significant noise and limited temporal coherence. Standard measurement techniques used for characterizing two-coloured X-ray pulses are challenging, as they are either invasive or diagnostically expensive. In this work, we employ machine learning methods such as neural networks and decision trees to predict the central photon energies of pairs of attosecond fundamental and second harmonic pulses using parameters that are easily recorded at the high-repetition rate of a single shot. Using real experimental data, we apply a detailed feature analysis on the input parameters while optimizing the training time of the machine learning methods. Our predictive models are able to make predictions of central photon energy for one of the pulses without measuring the other pulse, thereby leveraging the use of the spectrometer without having to extend its detection window. We anticipate applications in X-ray spectroscopy using XFELs, such as in time-resolved X-ray absorption and photoemission spectroscopy, where improved measurement of input spectra will lead to better experimental outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa