Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(10): 5565-5577, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32301278

RESUMO

Malignant mesothelioma (MM) is an aggressive asbestos-related cancer of the serous membranes. Despite intensive treatment regimens, MM is still a fatal disease, mainly due to the intrinsic resistance to current therapies and the lack of predictive markers and new valuable molecular targets. Protein arginine methyltransferase 5 (PRMT5) inhibition has recently emerged as a potential therapy against methylthioadenosine phosphorylase (MTAP)-deficient cancers, in which the accumulation of the substrate 5'-methylthioadenosine (MTA) inhibits PRMT5 activity, thus sensitizing the cells to further PRMT5 inhibition. Considering that the MTAP gene is frequently codeleted with the adjacent cyclin-dependent kinase inhibitor 2A (CDKN2A) locus in MM, we assessed whether PRMT5 could represent a therapeutic target also for this cancer type. We evaluated PRMT5 expression, the MTAP status and MTA content in normal mesothelial and MM cell lines. We found that both administration of exogenous MTA and stable PRMT5 knock-down, by short hairpin RNAs (shRNAs), selectively reduced the growth of MTAP-deleted MM cells. We also observed that PRMT5 knock-down in MTAP-deficient MM cells reduced the expression of E2F1 target genes involved in cell cycle progression and of factors implicated in epithelial-to-mesenchymal transition. Therefore, PRMT5 targeting could represent a promising new therapeutic strategy against MTAP-deleted MMs.


Assuntos
Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Mesotelioma/genética , Proteína-Arginina N-Metiltransferases/genética , Purina-Núcleosídeo Fosforilase/genética , Linhagem Celular Tumoral , Cromatografia Líquida , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Mesotelioma/metabolismo , Mesotelioma/patologia , Espectrometria de Massas em Tandem
2.
J Cell Physiol ; 233(9): 7391-7401, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29659015

RESUMO

Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, whose incidence is increasing worldwide. Unfortunately, no effective therapies are currently available and the prognosis is extremely poor. Recently, the anti-helminthic drug pyrvinium pamoate has attracted a strong interest for its anti-cancer activity, which has been demonstrated in many cancer models. Considering the previously established inhibitory effect of pyrvinium pamoate on the Wnt/ß-catenin pathway and given the important role of this pathway in MM, we investigated the potential anti-tumor activity of this drug in MM cell lines. We observed that pyrvinium pamoate significantly impairs MM cell proliferation, cloning efficiency, migration, and tumor spheroid formation. At the molecular level, our data show that pyrvinium pamoate down-regulates the expression of ß-catenin and Wnt-regulates genes. Overall, our study suggests that the repurposing of pyrvinium pamoate for MM treatment could represent a new promising therapeutic approach.


Assuntos
Reposicionamento de Medicamentos , Mesotelioma/tratamento farmacológico , Compostos de Pirvínio/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mesotelioma/genética , Mesotelioma/patologia , Compostos de Pirvínio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Tempo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
3.
J Cell Biochem ; 119(6): 4845-4854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29345355

RESUMO

In clinical practice for the treatment of chronic myeloid leukemia, second generation of tyrosine kinase inhibitors such as Nilotinib (NIL) specific and potent inhibitor of the BCR/ABL kinase and Dasatinib (DAS) a inhibitor of BCR/ABL and Src family kinase were developed to clinically overcome imatinib resistance. In this study, we wanted to test the ability of some antioxidants such Resveratrol (RES) or a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) or δ-tocotrienol (δ-TOCO) to interact with DAS and NIL on viability, reactive oxygen species (ROS) production, lipid peroxidation, and apoptosis. To test the possible mechanisms of action of such antioxidants, we utilized N-acetyl-L-cysteine (NAC) a specific inhibitor ROS production or PP1 a specific Src tyrosine kinase inhibitor or BAPTA a specific chelator of intracellular calcium. Our data demonstrated: 1) RES, rMnSOD, δ-TOCO, and NAC, at dose used, significantly reduced the intracellular levels of MDA induced by DAS or NIL; 2) RES, rMnSOD, and δ-TOCO increased the intracellular ROS levels; 3) The increase ROS levels is related to higher levels of oligonucleosomesi induced by DAS and NIL and that NAC significantly reduced this activity. Interestingly, our data showed that apoptotic activity of DAS and NIL have significantly increased the production of oligonucleosomes by triggering excessive ROS generation as well as functionality of SERCA receptors.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tocoferóis/farmacologia , Humanos , Células K562 , Limoninas
4.
J Cell Physiol ; 232(1): 129-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037775

RESUMO

Ewing sarcoma (ES) is a highly aggressive bone and soft tissue cancer, representing the second most common primary malignant bone tumor in children and adolescents. Although the development of a multimodal therapy, including both local control (surgery and/or radiation) and systemic multidrug chemotherapy, has determined a significant improvement in survival, patients with metastatic and recurrent disease still face a poor prognosis. Moreover, considering that ES primarily affects young patients, there are concerns about long-term adverse effects of the therapy. Therefore, more rational strategies, targeting specific molecular alterations underlying ES, are required. Recent studies suggest that SRC family kinases (SFKs), which are aberrantly activated in most cancer types, could represent key therapeutic targets also for ES. Here, we challenged ES cell lines with a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221), which was previously shown to be a valuable proapoptotic agent in other tumor types while not affecting normal cells. We observed that SI221 significantly reduced ES cell viability and proved to be more effective than the well-known SFK inhibitor PP2. SI221 was able to induce apoptosis in ES cells and also reduced ES cell clonogenic potential. Furthermore, SI221 was also able to reduce ES cell migration. At the molecular level, our data suggest that SFK inhibition through SI221 could reduce ES cell viability at least in part by hindering an SFK-NOTCH1 receptor-p38 mitogen-activated protein kinase (MAPK) axis. Overall, our study suggests a potential application of specific SFK inhibition in ES therapy. J. Cell. Physiol. 232: 129-135, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias Ósseas/metabolismo , Movimento Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sarcoma de Ewing/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pirazóis/química , Pirimidinas/química , Quinases da Família src/metabolismo
5.
Int J Cancer ; 113(4): 568-74, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15472893

RESUMO

Resistance to chemotherapy is intrinsically present in most nonsmall-cell lung carcinomas (NSCLC). No parameter has yet been determined to predict the response to chemotherapy. However, MRP1 (multidrug resistance-associated protein) is suspected to play an important role in resistance to treatment. The genetic basis for this resistance is not clearly understood, but it could result from chromosome reassortments catalyzed by aneuploidy. The aim of this study was to investigate MRP1 expression concurrently to DNA ploidy analysis in order to evaluate the link between MRP1 expression and chromosome 16 (MRP1 gene location) aberrations in NSCLC before treatment. Eighty-four surgical tumor specimens, 18 selected samples containing more than 80% of carcinomatous cells and 11 samples from normal bronchial epithelium were studied. Samples were stained by MRP1 FITC indirect staining and propidium iodide and analyzed by Flow Cytometry. Fifty tumors contained at least 1 DNA-aneuploid clone and the percentage of MRP1-positive cells was higher in DNA-aneuploid cells (p = 0.0003). All tumors expressed MRP1, but the level of expression was 3-fold higher in DNA-aneuploid cells than in DNA-diploid cells (normal bronchial cells as well as carcinomatous cells) (p < 0.0001). FISH analysis of 24 tumor imprints using a chromosome 16 alpha-satellite centromere probe demonstrated significantly more frequent gain of chromosome 16 in DNA-aneuploid tumors. These results suggest that MRP1 overexpression in NSCLC could be a consequence of chromosome 16 reassortments catalyzed by aneuploidy and that DNA-aneuploid tumors could require different treatment modalities from those applied to DNA-diploid tumors.


Assuntos
Aneuploidia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , DNA de Neoplasias/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Brônquios/metabolismo , Estudos de Casos e Controles , Centrômero/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 16/genética , DNA Satélite/genética , Diploide , Resistência a Múltiplos Medicamentos , Epitélio/metabolismo , Humanos , Hibridização in Situ Fluorescente , Cariotipagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa