Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Lung Cancer ; 194: 107893, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008934

RESUMO

BACKGROUND: High interleukin-8 (IL-8) levels have been linked to poor prognosis in lung cancer, but conclusive data are lacking. MATERIALS AND METHODS: A comprehensive search was conducted on April 1st, 2023, from electronic databases, focusing on studies with IL-8 expression evaluations and the availability of hazard ratio (HR) and 95% confidence intervals (CI) for overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS) or adequate data for their estimation. Then, we examined IL-8 and CXCR1 RNA-seq data from The Cancer Genome Atlas (TCGA) dataset, and we correlated these data with OS. RESULTS: Among 2655 produced records, 10 manuscripts involving both non-small cell lung cancer and small cell lung cancer, were included in the analysis. Two manuscripts and one study included two and three different cohorts, respectively, for a total of 14 cohorts of patients. Overall, 4 cohorts evaluated IL-8 levels in patients treated with chemotherapy, 3 cohorts immunotherapy, 2 cohorts surgical patients and 4 cohorts other treatments; 1 cohort was removed, as the type of treatments was lacking. The 12 cohorts included in the OS analysis revealed that patients with high IL-8 levels have a lower OS probability, as compared to patients with low IL-8 levels (HR=1.75, 95 % CI 1.36-2.26). No significant difference between patients with high and low IL-8 levels was observed in the 8 cohorts available for PFS analysis. Sensitivity analysis according to treatment revealed significant PFS and OS differences for patients treated with chemotherapy or immunotherapy. Analysis of RNA-seq data from TCGA, confirmed the correlation between high IL-8 and CXCR1 expression and worse OS in patients with resected lung cancer. CONCLUSION: To the best of our knowledge, this study represents the first meta-analysis demonstrating a negative prognostic impact of high IL-8 level in lung cancer, particularly in patients treated with chemotherapy and/or immunotherapy.


Assuntos
Biologia Computacional , Interleucina-8 , Neoplasias Pulmonares , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico , Biologia Computacional/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia
2.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954367

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.

3.
J Exp Clin Cancer Res ; 37(1): 140, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986755

RESUMO

BACKGROUND: Mounting evidence suggests that RAF-mediated MEK activation plays a crucial role in paradox MAPK (re)activation, leading to resistance and therapeutic failure with agents hitting a single step along the MAPK cascade. METHODS: We examined the molecular and functional effects of single and combined BRAF (dabrafenib), pan-RAF (RAF265), MEK (trametinib) and EGFR/HER2 (lapatinib) inhibition, using Western Blot and conservative isobologram analysis to assess functional synergism, and explored genetic determinants of synergistic interactions. Immunoprecipitation based assays were used to detect the interaction between BRAF and CRAF. The Mann-Whitney U test was used for comparing quantitative variables. RESULTS: Here we demonstrated that a combination of MEK and BRAF inhibitors overcomes paradoxical MAPK activation (induced by BRAF inhibitors) in BRAF-wt/RAS-mut NSCLC and PDAC in vitro. This results in growth inhibitory synergism, both in vitro and in vivo, in the majority (65%) of the cellular models analyzed, encompassing cell lines and patient-derived cancer stem cells and organoids. However, RAS mutational status is not the sole determinant of functional synergism between RAF and MEK inhibitors, as demonstrated in KRAS isogenic tumor cell line models. Moreover, in EGFR-driven contexts, paradoxical MAPK (re)activation in response to selective BRAF inhibition was dependent on EGFR family signaling and could be offset by simultaneous EGFR/HER-2 blockade. CONCLUSIONS: Overall, our data indicate that RAF inhibition-induced paradoxical MAPK activation could be exploited for therapeutic purposes by simultaneously targeting both RAF and MEK (and potentially EGFR family members) in appropriate molecular contexts. KRAS mutation per se does not effectively predict therapeutic synergism and other biomarkers need to be developed to identify patients potentially deriving benefit from combined BRAF/MEK targeting.


Assuntos
Antineoplásicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oximas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 7: 43013, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220839

RESUMO

Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Everolimo/farmacologia , Feminino , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores
5.
Front Oncol ; 5: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763354

RESUMO

PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.

6.
Expert Opin Drug Discov ; 8(11): 1381-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24088065

RESUMO

INTRODUCTION: Non-small-cell lung cancer (NSCLC) subtypes are driven by specific genetic aberrations. For reasons such as this, there is a call for treatment personalization. The ability to instigate NSCLC fragmentation poses new methodological problems, and new 'driver' molecular aberrations are being discovered at an unprecedented pace. AREAS COVERED: This article describes the clinical development of epidermal growth factor-tyrosine kinase inhibitors (EGFR-TKIs) and crizotinib for EGFR-mutant and anaplastic lymphoma kinase (ALK)-rearranged NSCLC. Further, the authors briefly describe the emerging molecular targets in NSCLC, in terms of both rationale for therapeutic targeting and strategies, for clinical development. EXPERT OPINION: Target identification and validation in NSCLC still requires considerable effort, as not all of the molecular alterations are clear 'drivers' nor can they be efficiently targeted with available drugs. However, 50% of the NSCLC cases are without clear-defined molecular aberrations. Clinical trial methodology will need to develop novel paradigms for targeted drug development, aiming at the validation of an ideal 'biology-to-trial' approach. Despite significant challenges, a truly 'personalized' approach to NSCLC therapy appears to be within our reach.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Desenho de Fármacos , Descoberta de Drogas/métodos , Fator de Crescimento Epidérmico/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Quinase do Linfoma Anaplásico , Antineoplásicos/uso terapêutico , Fator de Crescimento Epidérmico/genética , Humanos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos
7.
J Mol Med (Berl) ; 90(6): 667-79, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22215152

RESUMO

The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Benzamidas/farmacologia , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Melanoma/enzimologia , Camundongos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa