Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012567

RESUMO

Fungal pathogens capable of producing mycotoxins are one of the main threats to the cultivation of cereals and the safety of the harvested kernels. Improving the resistance of crops to fungal disease and accumulation of mycotoxins is therefore a crucial issue. Achieving this goal requires a deep understanding of plant defense mechanisms, most of them involving specialized metabolites. However, while numerous studies have addressed the contribution of phenylpropanoids and carotenoids to plant chemical defense, very few have dealt with tocochromanols. Tocochromanols, which encompass tocopherols and tocotrienols and constitute the vitamin E family, are widely distributed in cereal kernels; their biosynthetic pathway has been extensively studied with the aim to enrich plant oils and combat vitamin E deficiency in humans. Here we provide strong assumptions arguing in favor of an involvement of tocochromanols in plant-fungal pathogen interactions. These assumptions are based on both direct effects resulting from their capacity to scavenge reactive oxygen species, including lipid peroxyl radicals, on their potential to inhibit fungal growth and mycotoxin yield, and on more indirect effects mainly based on their role in plant protection against abiotic stresses.


Assuntos
Micotoxinas , Tocotrienóis , Grão Comestível/metabolismo , Humanos , Estresse Fisiológico , Tocoferóis/metabolismo , Tocotrienóis/metabolismo
2.
Fungal Genet Biol ; 153: 103566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991664

RESUMO

Fusarium graminearum is one of the most frequent causal agents of the Fusarium Head Blight, a cereal disease spread throughout the world, reducing grain production and quality. F. graminearum isolates are genetically and phenotypically highly diverse. Notably, remarkable variations of aggressiveness between isolates have been observed, which could reflect an adaptive potential of this pathogen. In this study, we aimed to characterize the genetic basis of aggressiveness variation observed in an F1 population (n = 94), for which genome sequences of both parental strains are available. Aggressiveness was assessed by a panel of in planta and in vitro proxies during two phenotyping trials including, among others, disease severity and mycotoxin accumulation in wheat spike. One major and single QTL was mapped for all the traits measured, on chromosome I, that explained up to 90% of the variance for disease severity. The confidence interval at the QTL spanned 1.2 Mb and contained 428 genes on the reference genome. Of these, four candidates were selected based on the postulate that a non-synonymous mutation affecting protein function may be responsible for phenotypic differences. Finally, a new mutation was identified and functionally validated in the gene FgVe1, coding for a velvet protein known to be involved in pathogenicity and secondary metabolism production in several fungi.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Triticum/microbiologia , Alelos , Mapeamento Cromossômico , Cromossomos Fúngicos , Genes Fúngicos , Mutação , Fenótipo , Locos de Características Quantitativas , Metabolismo Secundário/genética
3.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202726

RESUMO

Ochratoxin A (OTA) is one of the worldwide most important mycotoxins in terms of health and agroeconomic consequences. With the aim to promote the use of phytochemicals as alternatives to synthetic fungicides, the effect of hydroxycinnamic acids on the fungal growth and OTA yield by two major OTA-producing species was investigated. After a first step dedicated to the definition of most suitable culture conditions, the impact of 0.5 mM ferulic (FER), p-coumaric (COUM), caffeic and chlorogenic acids was evaluated on Aspergillus westerdijkiae and Penicillium verrucosum. Whereas no fungal growth reduction was observed regardless of the phenolic acid and fungal isolate, our results demonstrated the capacity of FER and COUM to inhibit OTA production. The most efficient compound was FER that led to a 70% reduction of OTA yielded by P. verrucosum and, although not statistically significant, a 35% inhibition of OTA produced by A. westerdijkiae. To further investigate the bioactivity of FER and COUM, their metabolic fate was characterized in fungal broths. The capacity of P. verrucosum to metabolize FER and COUM through a C2-clivage type degradation was demonstrated. Overall, our data support the potential use of FER to prevent OTA contamination and reduce the use of synthetic pesticides.


Assuntos
Aspergillus/metabolismo , Ácidos Cumáricos/farmacologia , Ocratoxinas/biossíntese , Penicillium/metabolismo
4.
J Sci Food Agric ; 99(1): 64-72, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29797333

RESUMO

BACKGROUND: Systemic infection through the seed is one of the routes used by the mycotoxinogenic pathogen Fusarium verticillioides for colonizing maize plants. The prohibition of the use of most chemical fungicides by the EU has promoted research on plant resistance inducers as an effective and sustainable alternative. Induction of a priming state in maize seeds might affect their susceptibility to contamination and accumulation of fumonisins. This state by application of a natural fertilizer called Chamae on maize seeds, was investigated in two varieties to control the colonization by the fungus and the accumulation of fumonisins B1 , B2 and B3 , germinating seeds, dead plants and yield. RESULTS: After inoculation of F. verticillioides on germinating seeds, the colonization by the fungus and the accumulation of fumonisins were significantly lower in seedlings coming from treated seeds, but a significant number of plants stopped their development by necrosis. In a field trial, the 0.01% (v/v) application dilution showed a lower plant density, although the level of biomass at harvest was not affected. CONCLUSION: The priming state contributed to the control of F. verticillioides development from seed infection and fumonisin accumulation in the early stage of plant growth, without affecting the final crop yield, and could reduce fungicide use and environmental contamination. © 2018 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Fumonisinas/metabolismo , Fusarium/metabolismo , Doenças das Plantas/prevenção & controle , Zea mays/microbiologia , Fumonisinas/análise , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Sementes/química , Sementes/microbiologia , Zea mays/química
5.
Metabolomics ; 14(3): 36, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-30830357

RESUMO

INTRODUCTION: In addition to classical targeted biochemical analyses, metabolomic analyses seem pertinent to reveal expected as well as unexpected compositional differences between plant genetically modified organisms (GMO) and non-GMO samples. Data previously published in the existing literature led to divergent conclusions on the effect of maize transgenes on grain compositional changes and feeding effects. Therefore, a new study examining field-grown harvested products and feeds derived from them remains useful. OBJECTIVES: Our aim was to use a metabolomics approach to characterize grain and grain-based diet compositional changes for two GMO events, one involving Bacillus thuringiensis toxin to provide insect resistance and the other one conferring herbicide tolerance by detoxification of glyphosate. We also investigated the potential compositional modifications induced by the use of a glyphosate-based herbicide on the transgenic line conferring glyphosate tolerance. RESULTS: The majority of statistically significant differences in grain composition, evidenced by the use of 1H-NMR profiling of polar extracts and LC-ESI-QTOF-MS profiling of semi-polar extracts, could be attributed to the combined effect of genotype and environment. In comparison, transgene and glyphosate effects remained limited in grain for the compound families studied. Some but not all compositional changes observed in grain were also detected in grain-based diets formulated for rats. CONCLUSION: Only part of the data previously published in the existing literature on maize grains of plants with the same GMO events could be reproduced in our experiment. All spectra have been deposited in a repository freely accessible to the public. Our grain and diet characterization opened the way for an in depth study of the effects of these diets on rat health.


Assuntos
Ração Animal/normas , Alimentos Geneticamente Modificados/normas , Glicina/análogos & derivados , Metaboloma , Sementes/metabolismo , Zea mays/metabolismo , Animais , Glicina/farmacologia , Ratos , Sementes/efeitos dos fármacos , Sementes/genética , Zea mays/genética , Glifosato
6.
J Sci Food Agric ; 97(8): 2443-2452, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27696424

RESUMO

BACKGROUND: Fumonisin B1 (FB1 ) is a mycotoxin produced by several Fusarium species and is a very common contaminant of maize-based food and feed throughout the world. The selection and use of FB1 -degrading microorganisms appears as a promising alternative to cope with the problem of toxicity towards humans and livestock. High moisture maize grain silage, which is based on natural maize fermentation, could be an interesting reservoir of such microorganisms. RESULTS: Using an in vitro simulated silage model with FB1 naturally contaminated grains, we demonstrated a significant raw decrease in FB1 during ensiling process ascribed to biodegradation mechanisms. A panel of 98 bacteria and yeasts were isolated from this matrix and selected for their ability to use FB1 as the sole source of C and N. For nine of them, the ability to degrade FB1 in vitro was evidenced. Notably, two bacteria identified as Lactobacillus sp. were highlighted for their efficient FB1 -degrading capacity and production of hydrolysed FB1 as intermediate degradation metabolite. CONCLUSION: Fermentation of high moisture maize grain contaminated with FB1 leads to a significant reduction of the toxin and allows the isolation of FB1 -degrading microorganisms that could further be used as FB1 decontaminating agents. © 2016 Society of Chemical Industry.


Assuntos
Bactérias/metabolismo , Fumonisinas/metabolismo , Sementes/microbiologia , Leveduras/metabolismo , Zea mays/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fermentação , Contaminação de Alimentos/análise , Fumonisinas/análise , Sementes/química , Silagem/análise , Silagem/microbiologia , Água/análise , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação , Zea mays/química
7.
Food Microbiol ; 53(Pt A): 70-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611171

RESUMO

Listeria monocytogenes is a pathogenic Gram positive bacterium and the etiologic agent of listeriosis, a severe food-borne disease. Lactococcus piscium CNCM I-4031 has the capacity to prevent the growth of L. monocytogenes in contaminated peeled and cooked shrimp. To investigate the inhibititory mechanism, a chemically defined medium (MSMA) based on shrimp composition and reproducing the inhibition observed in shrimp was developed. In co-culture at 26 °C, L. monocytogenes was reduced by 3-4 log CFU g(-1) after 24 h. We have demonstrated that the inhibition was not due to secretion of extracellular antimicrobial compounds as bacteriocins, organic acids and hydrogen peroxide. Global metabolomic fingerprints of these strains in pure culture were assessed by liquid chromatography coupled with high resolution mass spectrometry. Consumption of glucose, amino-acids, vitamins, nitrogen bases, iron and magnesium was measured and competition for some molecules could be hypothesized. However, after 24 h of co-culture, when inhibition of L. monocytogenes occurred, supplementation of the medium with these compounds did not restore its growth. The inhibition was observed in co-culture but not in diffusion chamber when species were separated by a filter membrane. Taken together, these data indicate that the inhibition mechanism of L. monocytogenes by L. piscium is cell-to-cell contact-dependent.


Assuntos
Antibiose , Microbiologia de Alimentos , Lactococcus/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Meios de Cultura/química , Lactococcus/crescimento & desenvolvimento , Lactococcus/metabolismo , Listeria monocytogenes/metabolismo , Metabolômica , Frutos do Mar/microbiologia
8.
Int J Mol Sci ; 16(10): 24839-72, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26492237

RESUMO

Fusarium graminearum is the causal agent of Fusarium head blight (FHB) and Gibberella ear rot (GER), two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum.


Assuntos
Grão Comestível/metabolismo , Grão Comestível/microbiologia , Fusarium/metabolismo , Metabolômica , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
9.
J Agric Food Chem ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780464

RESUMO

Fusarium graminearum is the causal agent of Gibberella ear rot (GER) in maize, a devastating fungal disease resulting in yield reduction and contamination of grains with type B trichothecene (TCTB) mycotoxins. Reducing GER damage requires the implementation of an integrated management strategy in which the use of resistant maize genotypes is a key factor. The present study aimed at providing new phenotyping tools to improve breeding pipelines by investigating the yet understudied contribution of carotenoids to GER resistance. Here, we demonstrated for the first time the efficiency of carotenoid extracts from various maize genotypes to inhibit the production of TCTB by F. graminearum. We further suggested that zeaxanthin could be a key actor of this inhibition efficiency, notably via a negative transcriptional control of several biosynthetic genes of the TCTB pathway. Besides, we demonstrated that zeaxanthin treatments led to profound perturbations in the fungal redox homeostasis by affecting the expression of key genes encoding ROS detoxifying enzymes, several of them being involved in F. graminearum virulence during plant infection. Altogether, our data support the contribution of carotenoids to the mechanisms employed by maize to counteract F. graminearum infection and its production of TCTB.

10.
Analyst ; 137(21): 4958-67, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22970429

RESUMO

Metabolomics aims at detecting and semi-quantifying small molecular weight metabolites in biological samples in order to characterise the metabolic changes resulting from one or more given factors and/or to develop models based on diagnostic biomarker candidates. Nevertheless, whatever the objective of a metabolomic study, one critical step consists in the structural identification of mass spectrometric features revealed by statistical analysis and this remains a real challenge. Indeed, this requires both an understanding of the studied biological system, the correct use of various analytical information (retention time, molecular weight experimentally measured, isotopic golden rules, MS/MS fragment pattern interpretation…), or querying online databases. In gas chromatography-electro-ionisation (EI)-mass spectrometry, EI leads to a very reproducible fragmentation allowing establishment of universal EI mass spectra databases (for example, the NIST database -National Institute of Standards and Technology) and thus facilitates the identification step. Unfortunately, the situation is different when working with liquid chromatography-mass spectrometry (LC-MS) since atmospheric pressure ionisation exhibits high inter-instrument variability regarding fragmentation. Therefore, the constitution of LC-MS "in-house" spectral databases appears relevant in this context. The present study describes the procedure developed and applied to increment 133 and 130 metabolites in databanks dedicated to analyses performed with LC-HRMS in positive and negative electrospray ionisation, and the use of these databanks for annotating quickly untargeted metabolomics fingerprints. This study also describes the optimization of the parameters controlling the automatic processing in order to obtain a fast and reliable annotation of a maximum of organic compounds. This strategy was applied to bovine kidney samples collected from control animals or animals treated with steroid hormones. Thirty-eight compounds were identified successfully in the generated chemical phenotypes, among which five were found to be candidate markers of the administration of these anabolic agents, demonstrating the efficiency of the developed strategy to reveal and confirm metabolite structures according to the high-throughput objective expected from these integrative biological approaches.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Automação , Bovinos , Cromatografia Líquida de Alta Pressão/normas , Bases de Dados Factuais , Dopagem Esportivo/prevenção & controle , Rim/metabolismo , Metabolômica/normas , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray/normas
11.
Toxins (Basel) ; 14(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35622565

RESUMO

Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Cromatina , DNA/metabolismo , Histonas/metabolismo , Humanos , Metabolismo Secundário
12.
J Fungi (Basel) ; 8(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35330231

RESUMO

Crops are threatened by numerous fungal diseases that can adversely affect the availability and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate the transition towards sustainable environmentally friendly agriculture, there is an urgent need to develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing optimal yields and the safety of the harvests. Several defensins have been reported to display antifungal and even-despite being under-studied-antimycotoxin activities and could be promising natural molecules for the development of control strategies. This review analyses pioneering and recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins, the opportunity to optimize large-scale production procedures such as their solubility, stability and toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present review strongly supports the bright future held by defensin-based plant protection solutions while pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research findings into commercial products.

13.
J Agric Food Chem ; 70(26): 8085-8096, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730681

RESUMO

Durum wheat is one of the cereal crops that accumulates the highest concentrations of cadmium (Cd) and deoxynivalenol (DON) mycotoxin in its grains, thereby affecting the safety of products made of durum wheat grains (pasta and semolina). This study investigates in planta the interaction between Cd and Fusarium graminearum, the main causal agent of DON accumulation in grains. A pot experiment was designed to characterize the response of durum wheat to F. graminearum infection at three levels of Cd exposure: 0.1, 2, and 10 mg Cd kg-1 soil, which showed that the accumulation of Cd and DON resulted from interacting processes. On the one hand, plant exposure to Cd reduced the concentration of DON in grains. The mitigating effect of Cd on DON accumulation was attributed to the restricted growth of F. graminearum, which could result from enhanced plant resistance to the fungal pathogen induced by Cd exposure. On the other hand, F. graminearum infection of durum wheat increased the Cd concentration in the grains. The promoting effect of Fusarium infection on Cd accumulation was attributed to decoupling of the allocation of Cd and photoassimilates to the grains and to the reduced strength of the grain sink for photoassimilates caused by the fungus. Provided that this result is confirmed in field conditions, it suggests that in Cd-contaminated soils, particular attention should be paid to agronomic practices that affect Fusarium head blight disease to avoid further increase in the risk of exceeding the regulatory limit set by the European Union for Cd in durum wheat.


Assuntos
Fusarium , Micotoxinas , Cádmio , Grão Comestível/química , Micotoxinas/análise , Doenças das Plantas/microbiologia , Tricotecenos , Triticum/microbiologia
14.
Sci Rep ; 11(1): 7962, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846413

RESUMO

Fusarium graminearum is a major fungal pathogen affecting crops of worldwide importance. F. graminearum produces type B trichothecene mycotoxins (TCTB), which are not fully eliminated during food and feed processing. Therefore, the best way to minimize TCTB contamination is to develop prevention strategies. Herein we show that treatment with the reduced form of the γ-core of the tick defensin DefMT3, referred to as TickCore3 (TC3), decreases F. graminearum growth and abrogates TCTB production. The oxidized form of TC3 loses antifungal activity, but retains anti-mycotoxin activity. Molecular dynamics show that TC3 is recruited by specific membrane phospholipids in F. graminearum and that membrane binding of the oxidized form of TC3 is unstable. Capping each of the three cysteine residues of TC3 with methyl groups reduces its inhibitory efficacy. Substitutions of the positively-charged residues lysine (Lys) 6 or arginine 7 by threonine had the highest and the lesser impact, respectively, on the anti-mycotoxin activity of TC3. We conclude that the binding of linear TC3 to F. graminearum membrane phospholipids is required for the antifungal activity of the reduced peptide. Besides, Lys6 appears essential for the anti-mycotoxin activity of the reduced peptide. Our results provide foundation for developing novel and environment-friendly strategies for controlling F. graminearum.


Assuntos
Defensinas/farmacologia , Fusarium/crescimento & desenvolvimento , Micotoxinas/biossíntese , Carrapatos/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/farmacologia , Cisteína/metabolismo , Lipídeos de Membrana/metabolismo , Metilação , Peptídeos/química , Fosfolipídeos/metabolismo , Ligação Proteica
15.
Toxins (Basel) ; 13(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672426

RESUMO

Consumption of cereals contaminated by mycotoxins poses health risks. For instance, Fumonisins B, mainly produced by Fusarium verticillioides and Fusariumproliferatum, and the type B trichothecene deoxynivalenol, typically produced by Fusarium graminearum, are highly prevalent on cereal grains that are staples of many cultural diets and known to represent a toxic risk hazard. In Peru, corn and other cereals are frequently consumed on a daily basis under various forms, the majority of food grains being sold through traditional markets for direct consumption. Here, we surveyed mycotoxin contents of market-bought grain samples in order to assess the threat these mycotoxins might represent to Peruvian population, with a focus on corn. We found that nearly one sample of Peruvian corn out of six was contaminated with very high levels of Fumonisins, levels mostly ascribed to the presence of F. verticillioides. Extensive profiling of Peruvian corn kernels for fungal contaminants could provide elements to refine the potential risk associated with Fusarium toxins and help define adapted food safety standards.


Assuntos
Exposição Dietética/efeitos adversos , Grão Comestível/microbiologia , Microbiologia de Alimentos , Fusarium/metabolismo , Micotoxinas/efeitos adversos , Micotoxinas/análise , Zea mays/microbiologia , Comércio , Qualidade de Produtos para o Consumidor , Abastecimento de Alimentos , Humanos , Peru , Medição de Risco
16.
Toxins (Basel) ; 12(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255199

RESUMO

Enniatins (ENNs) that belong to the group of emerging mycotoxins are widespread contaminants of agricultural commodities. There is currently insufficient evidence to rule out health concerns associated with long-term exposure to ENNs and efforts must be strengthened to define a control strategy. While the potential of plant compounds to counteract the contamination with legislated mycotoxins has been reported, little remains known regarding ENNs. The present study evidenced for the first time the efficiency of hydroxycinnamic acids to inhibit the fungal growth and ENNs yield by Fusarium avenaceum. Notably, 0.5 mM of exogenous ferulic, caffeic, and p-coumaric acids led to a drastic reduction of ENNs synthesis in pH4 broths, with ferulic acid being the most potent. The ENNs production inhibitory activity of ferulic acid was shown to be associated with a significant down-regulation of the expression of ENNs biosynthetic genes. To further investigate the bioactivity of ferulic acid, its metabolic fate was characterized in fungal broths and the capacity of F. avenaceum to metabolize it through a C2-cleavage type degradation was demonstrated. Overall, our data support the promising use of ferulic acid in ENNs control strategies, either as part of an environmentally friendly plant-care product or as a biomarker of plant resistance.


Assuntos
Ácidos Cumáricos/farmacologia , Depsipeptídeos/biossíntese , Fusarium/efeitos dos fármacos , Fusarium/fisiologia , Ácidos Cafeicos/farmacologia , DNA Fúngico , Contaminação de Alimentos , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Micotoxinas/biossíntese
17.
Toxins (Basel) ; 12(6)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498307

RESUMO

The maize pathogen Fusarium verticillioides and their mycotoxins cause damage to plants, animals, and human health. This work aimed to evaluate the effect of crude extracts (CEs) from Agaricus subrufescens, Lentinula edodes, and Pleurotus ostreatus fruiting bodies on in vitro production of biomass and mycotoxins by two strains of F. verticillioides. Stipes and pilei were separated before extraction for A. subrufescens and L. edodes. Comparative metabolomics and dereplication of phenolic compounds were used to analyze all CEs. Mushroom CEs did not significantly inhibit the production of mycelial biomass at concentrations of 2 mg mL⁻1. CEs from A. subrufescens (stipes and pilei) and L. edodes pilei inhibited the production of fumonisins B1 + B2 + B3 by 54% to 80%, whereas CE from P. ostreatus had no effect. In contrast, CE from L. edodes stipes dramatically increased the concentration of fumonisins in culture media. Fusaric acid concentration was decreased in cultures by all CEs except L. edodes stipes. Differences in phenolic composition of the extracts may explain the different effects of the CE treatments on the production of mycotoxins. The opposing activities of stipes and pilei from L. edodes offer an opportunity to search for active compounds to control the mycotoxin production by F. verticillioides.


Assuntos
Agaricales/química , Fumonisinas/metabolismo , Fungicidas Industriais/farmacologia , Ácido Fusárico/metabolismo , Fusarium/efeitos dos fármacos , Agaricus/química , Grão Comestível/microbiologia , Microbiologia de Alimentos , Fungicidas Industriais/isolamento & purificação , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Metanol/química , Pleurotus/química , Cogumelos Shiitake/química , Solventes/química , Zea mays/microbiologia
18.
Int J Food Microbiol ; 253: 12-19, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28463723

RESUMO

Fusarium proliferatum produces fumonisins B not only on maize but also on diverse crops including wheat. Using a wheat-based medium, the effects of abiotic factors, temperature and water activity (aW), on growth, fumonisin biosynthesis, and expression of FUM genes were compared for three F. proliferatum strains isolated from durum wheat in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles were slightly different. Regarding FUM gene transcriptional control, both FUM8 and FUM19 expression showed similar behavior in all tested conditions. For both genes, expression at 25°C correlated with fumonisin production, regardless of the aw conditions. However, at 15°C, these two genes were as highly expressed as at 25°C although the amounts of toxin were very weak, suggesting that the kinetics of fumonisin production was slowed at 15°C. This study provides useful baseline data on conditions representing a low or a high risk for contamination of wheat kernels with fumonisins.


Assuntos
Fumonisinas/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Estresse Fisiológico/fisiologia , Triticum/microbiologia , Argentina , Fusarium/genética , Fusarium/isolamento & purificação , Expressão Gênica/genética , Temperatura , Triticum/metabolismo , Água/metabolismo
19.
Bioanalysis ; 7(1): 133-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25558941

RESUMO

This review aims to describe the most significant applications of mass spectrometry-based metabolomics in the field of chemical food safety. A particular discussion of all the different analytical steps involved in the metabolomics workflow (sample preparation, mass spectrometry analytical platform and data processing) will be addressed.


Assuntos
Inocuidade dos Alimentos/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
20.
Drug Test Anal ; 4 Suppl 1: 59-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22851362

RESUMO

Metabolomics is a science of interest in food analysis to describe and predict properties of food products and processes. It includes the development of analytical methods with the ultimate goal being the identification of so-called 'quality markers', (i.e. sets of metabolites that correlate with, for example, quality, safety, taste, or fragrance of foodstuffs). In turn, these metabolites are influenced by factors as genetic differences of the raw food ingredients (such as animal breed or crop species differences), growth conditions (such as climate, irrigation strategy, or feeding) or production conditions (such as temperature, acidity, or pressure). In cases where the routine-based measurement of a food property faces some limitations such as the lack of knowledge regarding the target compounds to monitor, monitoring based on a limited set of crucial biomarkers is a good alternative, which is of great interest for food safety purposes regarding growth promoting practices. Such an approach may be more efficient than using a classic approach based on a limited set of known metabolites of anabolic compounds. In this context, screening strategies allowing detection of the physiological response resulting from anabolic compound administration are promising approaches to detect their misuse. The global metabolomics workflow implemented for such studies is presented and illustrated through various examples of biological matrices profiling (tissue, blood, urine) and for different classes of anabolic compounds (steroids, ß-agonists and somatotropin).


Assuntos
Anabolizantes/análise , Anabolizantes/metabolismo , Análise de Alimentos/métodos , Metabolômica/métodos , Esteroides/análise , Esteroides/metabolismo , Detecção do Abuso de Substâncias/veterinária , Anabolizantes/sangue , Anabolizantes/urina , Animais , Hormônio do Crescimento/análise , Hormônio do Crescimento/sangue , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/urina , Esteroides/sangue , Esteroides/urina , Detecção do Abuso de Substâncias/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa