Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 11(10): 3716-26, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25197948

RESUMO

An understanding of drug delivery system transport across epithelial cell monolayer is very important for improving the absorption and bioavailability of the drug payload. The mechanisms of epithelial cell monolayer transport for various nanocarriers may differ significantly due to their variable components, surface properties, or diameter. Solid lipid nanoparticles (SLNs), conventionally formed by lipid materials, have gained increasing attention in recent years due to their excellent biocompatibility and high oral bioavailability. However, there have been few reports about the mechanisms of SLNs transport across epithelial cell monolayer. In this study, the molecular mechanisms utilized by SLNs of approximately 100 nm in diameter crossing intestinal epithelial monolayer were carefully studied using a simulative intestinal epithelial monolayer formed by Madin-Darby canine kidney (MDCK) epithelial cells. The results demonstrated that SLNs transportation did not induce a significant change on tight junction structure. We found that the endocytosis of SLNs into the epithelial cells was energy-dependent and was significantly greater than nanoparticle exocytosis. The endocytosis of SLNs was found to be rarely mediated via macropinocytosis, as confirmed by the addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) as an inhibitory agent, and mainly depended on lipid raft/caveolae- and clathrin-mediated pathways. After SLNs was internalized into MDCK cells, lysosome was one of the main destinations for these nanoparticles. The exocytosis study indicated that the endoplasmic reticulum, Golgi complex, and microtubules played important roles in the transport of SLNs out of MDCK cells. The transcytosis study indicated that only approximately 2.5% of the total SLNs was transported from the apical side to the basolateral side. For SLNs transportation in MDCK cell monolayer, greater transport (approximately 4-fold) was observed to the apical side than to the basolateral side. Our findings may present a more comprehensive understanding on the transport of SLNs across epithelial cell monolayer.


Assuntos
Nanopartículas/química , Nanopartículas/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Cães , Endocitose/fisiologia , Exocitose/fisiologia , Células Madin Darby de Rim Canino
2.
Mol Pharm ; 10(5): 1865-73, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23495754

RESUMO

The aim of the present study was to evaluate the potential of PEGylated solid lipid nanoparticle (pSLN) as mucus penetrating particles (MPP) for oral delivery across gastrointestinal mucus. The SLN was prepared by an aqueous solvent diffusion method, subsequently modified with PEG2000-stearic acid (PEG2000-SA) as hydrophilic groups. Surface properties, cytotoxicity, cellular uptake, and transport across Caco-2/HT29 coculture cell monolayers, intestinal absorption, and pharmacokinetics of pSLN were studied compared with that of SLN. Quantitative cellular uptake showed that the internalization of SLN and pSLN was an active transfer process, which would be restrained by several inhibitors of cell activity. Compared with SLN, the permeation ability of pSLN decreased through Caco-2 cell monolayer while it increased through a mucus-secreting Caco-2/HT29 coculture cell monolayer, which indicated that the mucus layer has a significant impact on determining the efficiency of oral nanoformulations. In addition to increasing permeation ability, the stability of the nanoparticles in simulated intestinal fluids was also increased by the PEGylation. Moreover, in vitro everted gut sac technique and the ligated intestinal loops model in vivo also demonstrated that pSLN can rapidly penetrate mucus secretions, whereas the SLN were strongly trapped by highly viscoelastic mucus barriers. The pharmacokinetic studies presented that pSLN exhibited improved absorption efficiency and prolonged blood circulation times with a 1.99-fold higher relative bioavailability compared with SLN. In conclusion, PEGylated solid lipid nanoparticles had advantages in enhancing the bioavailability of oral administration.


Assuntos
Absorção Intestinal , Nanopartículas/administração & dosagem , Nanopartículas/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Técnicas de Cocultura , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Células HT29 , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipídeos/química , Masculino , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
3.
ACS Appl Mater Interfaces ; 8(9): 5929-40, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26860241

RESUMO

Solid lipid nanoparticles (SLNs) have been extensively investigated and demonstrated to be a potential nanocarriers for improving oral bioavailability of many drugs. However, the molecular mechanisms related to this discovery are not yet understood. Here, the molecular transport mechanisms of the SLNs crossing simulative intestinal epithelial cell monolayers (Caco-2 cell monolayers) were studied. The cytotoxicology results of the SLNs in Caco-2 cells demonstrated that the nanoparticles had low cytotoxicity, had no effect on the integrity of the cell membrane, did not induce oxidative stress, and could significantly reduce cell membrane fluidity. The endocytosis of the SLNs was time-dependent, and their delivery was energy-dependent. For the first time, the transport of the SLNs was directly verified to be a vesicle-mediated process. The internalization of the SLNs was mediated by macropinocytosis pathway and clathrin- and caveolae (or lipid raft)-related routes. Transferrin-related endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus were confirmed to be the main destinations of the SLNs in Caco-2 cells. As for the transport of the SLNs in Caco-2 cell monolayers, the results demonstrated that the SLNs transported to the basolateral side were intact, and the transport of the nanoparticles did not destroy the structure of tight junctions. The transcytosis of the SLNs across the Caco-2 cell monolayer was demonstrated to be mediated by the same routes as that in the endocytosis study. The ER, Golgi apparatus, and microtubules were confirmed to be important for the transport of the SLNs to both the basolateral and apical membrane sides. This study provides a more thoroughly understand of SLNs transportation crossing intestinal epithelial cell monolayers and could be beneficial for the fabrication of SLNs.


Assuntos
Membrana Celular/metabolismo , Lipídeos/química , Nanopartículas/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Ouro/química , Complexo de Golgi/metabolismo , Humanos , Lisossomos/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa