Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26925, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486773

RESUMO

This study aims to accurately identify mine water sources and reduce the hazards caused by water inrush accidents in coal mines. Taking the Gubei coal mine as an example, the water quality results of the water samples from the Cenozoic unconsolidated aquifer, Permian sandstone fracture aquifer, and Carboniferous Taiyuan Formation limestone karst fracture aquifer in the mine area were tested, and K++Na+, Ca2+, Mg2+, Cl-, SO42-, HCO3-, TDS (Total Dissolved Solids), and pH were selected as the main indicators to study the water chemistry characteristics of the aquifer through water chemistry component analysis, major ion content analysis, Piper trilinear analysis, and correlation analysis. Thirty-five groups of water samples were randomly selected and imported into SPSS software for factor analysis (FA) and downsized to three main factors as the input variables of the artificial neural network model. The particle swarm optimization (PSO) code was written based on the MATLAB platform to improve the self-adjustment weights and acceleration factors for optimizing the initial weights and thresholds of the Back-Propagation (BP) neural network. The training and prediction samples were learned in the ratio of 8:2, and the recognition results were compared with the traditional BP neural network model. Results showed that the groundwater of the Gubei coal mine demonstrated a water quality vertical zoning pattern, and the chemical composition was dominated by cation K++Na+ and anion Cl-. The FA-PSO-BP neural network model has a higher accuracy of water source discrimination compared with the cluster analysis and the FA-BP neural network model. The FA-PSO-BP neural network model is worthy of further application in the problem of water source identification in mine water inrush.

2.
Sci Total Environ ; 860: 160454, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436624

RESUMO

Evaluating the ecological health risks created by major ions, metalloids and trace elements concentrations in groundwater and pollution sources were essential to effectively protect groundwater resources. For this study, A total of 93 samples were collected from multiple aquifers in the Sunan mining area, eastern China. The Positive matrix factorization (PMF) model results revealed the following sources, in percentages. The Quaternary loose aquifer (QLA) water includes CaMg mineral dissolution (30.3 %), salinity (28.2 %), metal industrial wastewater (26.3 %), iron and manganese minerals (8.0 %) and coal gangue (7.2 %). The Permian fractured sandstone aquifer (PFA) water includes CaMg mineral dissolution sources (29.8 %), mine wastewater (28.6 %), aluminosilicate (21.6 %) and pyrite source (20.0 %). The Carbonifer fractured limestone aquifer (CFA) water includes and mine wastewater (34.2 %), CaMg mineral dissolution (25.4 %), pyrite (22.6 %) and aluminosilicate (17.7 %). The Ordovician fractured limestone aquifer (OFA) water includes manganese and aluminum metal minerals (27.9 %), halite dissolution materials (24.9 %), industrial and agricultural waste water (24.0 %) and calcium­magnesium minerals (23.2 %). A PMF-based assessment of ecological health risk indicates that the concentrations of elements As and Co are the dominant elements impacting non-carcinogenic and carcinogenic risks; and As, Cr, and Cu are the dominant elements impacting potential ecological risks. These mainly originate from geological sources, coal gangue sources, mine drainage sources and agricultural sewage discharge sources. The study showed the sources of groundwater pollution in multiple aquifers and their priority treatment areas, providing a basis for groundwater management and protection.


Assuntos
Água Subterrânea , Metaloides , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Manganês , Águas Residuárias , Monitoramento Ambiental/métodos , Minerais , Carbonato de Cálcio , Carvão Mineral/análise , China , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 663: 1-15, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708212

RESUMO

Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa