Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 403(10441): 2317-2325, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280389

RESUMO

BACKGROUND: Autosomal recessive deafness 9, caused by mutations of the OTOF gene, is characterised by congenital or prelingual, severe-to-complete, bilateral hearing loss. However, no pharmacological treatment is currently available for congenital deafness. In this Article, we report the safety and efficacy of gene therapy with an adeno-associated virus (AAV) serotype 1 carrying a human OTOF transgene (AAV1-hOTOF) as a treatment for children with autosomal recessive deafness 9. METHODS: This single-arm, single-centre trial enrolled children (aged 1-18 years) with severe-to-complete hearing loss and confirmed mutations in both alleles of OTOF, and without bilateral cochlear implants. A single injection of AAV1-hOTOF was administered into the cochlea through the round window. The primary endpoint was dose-limiting toxicity at 6 weeks after injection. Auditory function and speech were assessed by appropriate auditory perception evaluation tools. All analyses were done according to the intention-to-treat principle. This trial is registered with Chinese Clinical Trial Registry, ChiCTR2200063181, and is ongoing. FINDINGS: Between Oct 19, 2022, and June 9, 2023, we screened 425 participants for eligibility and enrolled six children for AAV1-hOTOF gene therapy (one received a dose of 9 × 1011 vector genomes [vg] and five received 1·5 × 1012 vg). All participants completed follow-up visits up to week 26. No dose-limiting toxicity or serious adverse events occurred. In total, 48 adverse events were observed; 46 (96%) were grade 1-2 and two (4%) were grade 3 (decreased neutrophil count in one participant). Five children had hearing recovery, shown by a 40-57 dB reduction in the average auditory brainstem response (ABR) thresholds at 0·5-4·0 kHz. In the participant who received the 9 × 1011 vg dose, the average ABR threshold was improved from greater than 95 dB at baseline to 68 dB at 4 weeks, 53 dB at 13 weeks, and 45 dB at 26 weeks. In those who received 1·5 × 1012 AAV1-hOTOF, the average ABR thresholds changed from greater than 95 dB at baseline to 48 dB, 38 dB, 40 dB, and 55 dB in four children with hearing recovery at 26 weeks. Speech perception was improved in participants who had hearing recovery. INTERPRETATION: AAV1-hOTOF gene therapy is safe and efficacious as a novel treatment for children with autosomal recessive deafness 9. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Science and Technology Commission of Shanghai Municipality, and Shanghai Refreshgene Therapeutics.


Assuntos
Dependovirus , Terapia Genética , Humanos , Terapia Genética/métodos , Dependovirus/genética , Criança , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Vetores Genéticos , Resultado do Tratamento , Surdez/genética , Surdez/terapia , Mutação , Proteínas de Membrana
2.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414247

RESUMO

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Assuntos
Cisplatino , Ferroptose , Perda Auditiva , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Cisplatino/efeitos adversos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Perda Auditiva/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Modelos Animais de Doenças , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos
3.
J Nanobiotechnology ; 22(1): 458, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085923

RESUMO

Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.


Assuntos
Regeneração Nervosa , Gânglio Espiral da Cóclea , Engenharia Tecidual , Alicerces Teciduais , Gânglio Espiral da Cóclea/citologia , Humanos , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Neurônios , Implantes Cocleares , Células-Tronco/citologia , Diferenciação Celular
4.
Acta Pharm Sin B ; 14(2): 455-467, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322328

RESUMO

According to the World Health Organization's world report on hearing, nearly 2.5 billion people worldwide will suffer from hearing loss by 2050, which may contribute to a severe impact on individual life quality and national economies. Sensorineural hearing loss (SNHL) occurs commonly as a result of noise exposure, aging, and ototoxic drugs, and is pathologically characterized by the impairment of mechanosensory hair cells of the inner ear, which is mainly triggered by reactive oxygen species accumulation, inflammation, and mitochondrial dysfunction. Though recent advances have been made in understanding the ability of cochlear repair and regeneration, there are still no effective therapeutic drugs for SNHL. Chinese herbal medicine which is widely distributed and easily accessible in China has demonstrated a unique curative effect against SNHL with higher safety and lower cost compared with Western medicine. Herein we present trends in research for Chinese herbal medicine for the treatment of SNHL, and elucidate their molecular mechanisms of action, to pave the way for further research and development of novel effective drugs in this field.

5.
Natl Sci Rev ; 11(6): nwae100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707203

RESUMO

Noise-induced hearing loss (NIHL) is a highly prevalent form of sensorineural hearing damage that has significant negative effects on individuals of all ages and there are no effective drugs approved by the US Food and Drug Administration. In this study, we unveil the potential of superparamagnetic iron oxide nanoparticle assembly (SPIOCA) to reshape the dysbiosis of gut microbiota for treating NIHL. This modulation inhibits intestinal inflammation and oxidative stress responses, protecting the integrity of the intestinal barrier. Consequently, it reduces the transportation of pathogens and inflammatory factors from the bloodstream to the cochlea. Additionally, gut microbiota-modulated SPIOCA-induced metabolic reprogramming in the gut-inner ear axis mainly depends on the regulation of the sphingolipid metabolic pathway, which further contributes to the restoration of hearing function. Our study confirms the role of the microbiota-gut-inner ear axis in NIHL and provides a novel alternative for the treatment of NIHL and other microbiota dysbiosis-related diseases.

6.
Adv Mater ; 36(28): e2307896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744452

RESUMO

Nerve guidance conduits (NGCs) are considered as promising treatment strategy and frontier trend for peripheral nerve regeneration, while their therapeutic outcomes are limited by the lack of controllable drug delivery and available physicochemical cues. Herein, novel aligned piezoelectric nanofibers derived hydrogel NGCs with ultrasound (US)-triggered electrical stimulation (ES) and controllable drug release for repairing peripheral nerve injury are proposed. The inner layer of the NGCs is the barium titanate piezoelectric nanoparticles (BTNPs)-doped polyvinylidene fluoride-trifluoroethylene [BTNPs/P(VDF-TrFE)] electrospinning nanofibers with improved piezoelectricity and aligned orientation. The outer side of the NGCs is the thermoresponsive poly(N-isopropylacrylamide) hybrid hydrogel with bioactive drug encapsulation. Such NGCs can not only induce neuronal-oriented extension and promote neurite outgrowth with US-triggered wireless ES, but also realize the controllable nerve growth factor release with the hydrogel shrinkage under US-triggered heating. Thus, the NGC can positively accelerate the functional recovery and nerve axonal regeneration of rat models with long sciatic nerve defects. It is believed that the proposed US-responsive aligned piezoelectric nanofibers derived hydrogel NGCs will find important applications in clinic neural tissue engineering.


Assuntos
Hidrogéis , Nanofibras , Regeneração Nervosa , Animais , Regeneração Nervosa/efeitos dos fármacos , Hidrogéis/química , Nanofibras/química , Ratos , Ondas Ultrassônicas , Compostos de Bário/química , Nervo Isquiático/fisiologia , Nervo Isquiático/efeitos dos fármacos , Titânio/química , Polivinil/química , Alicerces Teciduais/química , Resinas Acrílicas/química , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Liberação Controlada de Fármacos , Estimulação Elétrica , Nanopartículas/química , Engenharia Tecidual/métodos
7.
Adv Sci (Weinh) ; 11(31): e2400827, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881504

RESUMO

Advanced artificial nerve conduits offer a promising alternative for nerve injury repair. Current research focuses on improving the therapeutic effectiveness of nerve conduits by optimizing scaffold materials and functional components. In this study, a novel poly(3,4-ethylenedioxythiophene) (PEDOT)-integrated fish swim bladder (FSB) is presented as a conductive nerve conduit with ordered topology and electrical stimulation to promote nerve regeneration. PEDOT nanomaterials and adhesive peptides (IKVAV) are successfully incorporated onto the decellularized FSB substrate through pre-coating with polydopamine. The obtained PEDOT/IKVAV-integrated FSB substrate exhibits outstanding mechanical properties, high electrical conductivity, stability, as well as excellent biocompatibility and bioadhesive properties. In vitro studies confirm that the PEDOT/IKVAV-integrated FSB can effectively facilitate the growth and directional extension of pheochromocytoma 12 cells and dorsal root ganglion neurites. In addition, in vivo experiments demonstrate that the proposed PEDOT/IKVAV-integrated FSB conduit can accelerate defective nerve repair and functional restoration. The findings indicate that the FSB-derived conductive nerve conduits with multiple regenerative inducing signals integration provide a conducive milieu for nerve regeneration, exhibiting great potential for repairing long-segment neural defects.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Regeneração Nervosa , Polímeros , Animais , Polímeros/química , Regeneração Nervosa/fisiologia , Alicerces Teciduais/química , Sacos Aéreos , Peixes , Condutividade Elétrica , Materiais Biocompatíveis
8.
Adv Sci (Weinh) ; : e2309617, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889308

RESUMO

The physiological interactions between the peripheral and central auditory systems are crucial for auditory information transmission and perception, while reliable models for auditory neural circuits are currently lacking. To address this issue, mouse and human neural pathways are generated by utilizing a carbon nanotube nanofiber system. The super-aligned pattern of the scaffold renders the axons of the bipolar and multipolar neurons extending in a parallel direction. In addition, the electrical conductivity of the scaffold maintains the electrophysiological activity of the primary mouse auditory neurons. The mouse and human primary neurons from peripheral and central auditory units in the system are then co-cultured and showed that the two kinds of neurons form synaptic connections. Moreover, neural progenitor cells of the cochlea and auditory cortex are derived from human embryos to generate region-specific organoids and these organoids are assembled in the nanofiber-combined 3D system. Using optogenetic stimulation, calcium imaging, and electrophysiological recording, it is revealed that functional synaptic connections are formed between peripheral neurons and central neurons, as evidenced by calcium spiking and postsynaptic currents. The auditory circuit model will enable the study of the auditory neural pathway and advance the search for treatment strategies for disorders of neuronal connectivity in sensorineural hearing loss.

9.
Sci Bull (Beijing) ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38910106

RESUMO

Many clustered regularly interspaced short palindromic repeat and CRISPR-associated protein 12b (CRISPR-Cas12b) nucleases have been computationally identified, yet their potential for genome editing remains largely unexplored. In this study, we conducted a GFP-activation assay screening 13 Cas12b nucleases for mammalian genome editing, identifying five active candidates. Candidatus hydrogenedentes Cas12b (ChCas12b) was found to recognize a straightforward WTN (W = T or A) proto-spacer adjacent motif (PAM), thereby dramatically expanding the targeting scope. Upon optimization of the single guide RNA (sgRNA) scaffold, ChCas12b exhibited activity comparable to SpCas9 across a panel of nine endogenous loci. Additionally, we identified nine mutations enhancing ChCas12b specificity. More importantly, we demonstrated that both ChCas12b and its high-fidelity variant, ChCas12b-D496A, enabled allele-specific disruption of genes harboring single nucleotide polymorphisms (SNPs). These data position ChCas12b and its high-fidelity counterparts as promising tools for both fundamental research and therapeutic applications.

10.
Adv Mater ; 36(24): e2309002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488690

RESUMO

Organ-on-chips can highly simulate the complex physiological functions of organs, exhibiting broad application prospects in developmental research, disease simulation, as well as new drug research and development. However, there is still less concern about effectively constructing cochlea-on-chips. Here, a novel cochlear organoids-integrated conductive hydrogel biohybrid system with cochlear implant electroacoustic stimulation (EAS) for cochlea-on-a-chip construction and high-throughput drug screening, is presented. Benefiting from the superior biocompatibility and electrical property of conductive hydrogel, together with cochlear implant EAS, the inner ear progenitor cells can proliferate and spontaneously shape into spheres, finally forming cochlear organoids with good cell viability and structurally mature hair cells. By incorporating these progenitor cells-encapsulated hydrogels into a microfluidic-based cochlea-on-a-chip with culture chambers and a concentration gradient generator, a dynamic and high-throughput evaluation of inner ear disease-related drugs is demonstrated. These results indicate that the proposed cochlea-on-a-chip platform has great application potential in organoid cultivation and deafness drug evaluation.


Assuntos
Cóclea , Hidrogéis , Dispositivos Lab-On-A-Chip , Organoides , Animais , Hidrogéis/química , Organoides/citologia , Implantes Cocleares , Células-Tronco/citologia , Sobrevivência Celular , Humanos , Camundongos
11.
Adv Sci (Weinh) ; 11(29): e2304551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810137

RESUMO

Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Dependovirus , Células Ciliadas Auditivas , Regeneração , Animais , Camundongos , Dependovirus/genética , Reprogramação Celular/genética , Regeneração/genética , Regeneração/fisiologia , Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Diferenciação Celular/genética , Vetores Genéticos/genética , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas de Homeodomínio
12.
Cell Prolif ; 57(7): e13620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38400824

RESUMO

Irreversible damage to hair cells (HCs) in the cochlea leads to hearing loss. Cochlear supporting cells (SCs) in the murine cochlea have the potential to differentiate into HCs. Neuron membrane glycoprotein M6B (Gpm6b) as a four-transmembrane protein is a potential regulator of HC regeneration according to our previous research. In this study, we found that AAV-ie-mediated Gpm6b overexpression promoted SC-derived organoid expansion. Enhanced Gpm6b prevented the normal decrease in SC plasticity as the cochlea develops by supporting cells re-entry cell cycle and facilitating the SC-to-HC transformation. Also, overexpression of Gpm6b in the organ of Corti through the round window membrane injection facilitated the trans-differentiation of Lgr5+ SCs into HCs. In conclusion, our results suggest that Gpm6b overexpression promotes HC regeneration and highlights a promising target for hearing repair using the inner ear stem cells combined with AAV.


Assuntos
Dependovirus , Células Ciliadas Auditivas , Animais , Dependovirus/genética , Camundongos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citologia , Reprogramação Celular , Camundongos Endogâmicos C57BL , Cóclea/metabolismo , Cóclea/citologia , Transdiferenciação Celular , Organoides/metabolismo , Organoides/citologia
13.
Sci China Life Sci ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39083201

RESUMO

Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.

14.
Adv Sci (Weinh) ; : e2403173, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083316

RESUMO

Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.

15.
Cell Prolif ; 57(8): e13633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38528645

RESUMO

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.


Assuntos
Animais Recém-Nascidos , Reprogramação Celular , Cóclea , Animais , Camundongos , Cóclea/metabolismo , Cóclea/citologia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citologia , Dependovirus/genética , Ciclo Celular , Camundongos Endogâmicos C57BL , Regeneração , Células Labirínticas de Suporte/metabolismo , Neomicina/farmacologia
16.
Adv Sci (Weinh) ; 11(11): e2306788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189623

RESUMO

Mutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported. Here, AAV-OTOF is generated using good manufacturing practice and validated its efficacy and safety in mouse and non-human primates in order to determine the optimal injection dose, volume, and administration route for clinical trials. Subsequently, AAV-OTOF is delivered into one cochlea of a 5-year-old deaf patient and into the bilateral cochleae of an 8-year-old deaf patient with OTOF mutations. Obvious hearing improvement is detected by the auditory brainstem response (ABR) and the pure-tone audiometry (PTA) in these two patients. Hearing in the injected ear of the 5-year-old patient can be restored to the normal range at 1 month after AAV-OTOF injection, while the 8-year-old patient can hear the conversational sounds. Most importantly, the 5-year-old patient can hear and recognize speech only through the AAV-OTOF-injected ear. This study is the first to demonstrate the safety and efficacy of AAV-OTOF in patients, expands and optimizes current OTOF-related gene therapy and provides valuable information for further application of gene therapies for deafness.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Animais , Camundongos , Dependovirus/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Audição , Surdez/genética , Surdez/terapia , Terapia Genética
17.
Nat Cell Biol ; 26(1): 124-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168770

RESUMO

The gut microbiota play a pivotal role in human health. Emerging evidence indicates that gut microbes participate in the progression of tumorigenesis through the generation of carcinogenic metabolites. However, the underlying molecular mechanism is largely unknown. In the present study we show that a tryptophan metabolite derived from Peptostreptococcus anaerobius, trans-3-indoleacrylic acid (IDA), facilitates colorectal carcinogenesis. Mechanistically, IDA acts as an endogenous ligand of an aryl hydrocarbon receptor (AHR) to transcriptionally upregulate the expression of ALDH1A3 (aldehyde dehydrogenase 1 family member A3), which utilizes retinal as a substrate to generate NADH, essential for ferroptosis-suppressor protein 1(FSP1)-mediated synthesis of reduced coenzyme Q10. Loss of AHR or ALDH1A3 largely abrogates IDA-promoted tumour development both in vitro and in vivo. It is interesting that P. anaerobius is significantly enriched in patients with colorectal cancer (CRC). IDA treatment or implantation of P. anaerobius promotes CRC progression in both xenograft model and ApcMin/+ mice. Together, our findings demonstrate that targeting the IDA-AHR-ALDH1A3 axis should be promising for ferroptosis-related CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Ferroptose/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
18.
Fundam Res ; 3(4): 557-569, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38933554

RESUMO

Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/ß-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/ß-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.

19.
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa