Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 221: 115304, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36649845

RESUMO

The quality of fermented plant products is closely related to microbial metabolism. Here, the associations of bacterial communities, metabolites, and functional genes were explored using multi-omics techniques based on plant leaf fermentation systems. The results showed significant changes in the structure of the microbial community, with a significant decrease in Firmicutes and a significant increase in Proteobacteria. In addition, the concentration of metabolites with antibacterial, antioxidant and aroma properties increased significantly, enhancing the quality of the fermented plant leaves. Integrated macrogenomic and metabolomic analyses indicated that amino acid metabolism could be key metabolic pathway affecting fermentation quality. Actinobacteria, Proteobacteria, Firmicutes were actively involved in tyrosine metabolism (ko00350) and phenylalanine metabolism (ko00360), and are presumed to be the major groups responsible for synthesizing growth and flavor compounds. This study emphasized the important role of microorganisms in the changes of metabolites during the fermentation of plant leaves.


Assuntos
Microbiota , Multiômica , Fermentação , Bactérias/genética , Bactérias/metabolismo , Odorantes/análise
2.
Front Plant Sci ; 15: 1335850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571709

RESUMO

Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.

3.
Front Bioeng Biotechnol ; 11: 1108766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714011

RESUMO

Background: Tobacco alcoholization is an important step in increasing the quality of tobacco leaf, which may convert a portion of low-grade tobacco leaves into useable product, however this may take to 2-3 years. The addition of exogenous microorganisms to tobacco leaves and treating them by biological fermentation can shorten the maturation time of tobacco leaves, and improve the quality and applicability of low-grade tobacco leaves Methods: Several strains were screened from low-grade tobacco by flow cytometry, including the bacteria Bacillus amyloliticus, with starch degradation ability and Bacillus kochii, with protein degradation ability, and the fungus Filobasidium magnum with lipid oxidase ability, and were inoculated onto tobacco leaves, both individually and in combination, for solid-state fermentation Results: The greatest improvement in tobacco quality was observed when strains 4# and 3# were applied at a ratio of 3:1. The Maillard reaction products, such as 2-amyl furan, 1-(2-furanmethyl) -1 h-pyrrole, furfural and 2, 5-dimethylpyrazine, were significantly increased, by up to more than 2 times. When strains F7# and 3# were mixed at a ratio of 3:1, the improvement of sensory evaluation index was better than that of pure cultures. The increase of 3-(3, 4-dihydro-2h-pyrro-5-yl) pyridine, ß -damasone and benzyl alcohol was more than 1 times. The increase of 2-amyl-furan was particularly significant, up to 20 times Conclusion: The functional strains screened from tobacco leaves were utilized for the biological fermentation of tobacco leaves, resulting in the reduction of irritation and an improvement in quality of final product, showing a good potential for application.

4.
Front Bioeng Biotechnol ; 11: 1251413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662435

RESUMO

Background and Objective: With the development of the world economy and the integration of cultures, the Chinese cigar market has shown a significant upward trend. However, high-quality cigar leaves are mostly produced in Dominica, Cuba, Nicaragua and other places. In contrast, Chinese cigar leaves have problems such as insufficient aroma, which has become one of the main factors restricting the development of Chinese cigars. Adding medium to ferment is a traditional method in the cigar industry. At present, it mostly relies on manual experience, and lacks systematic and scientific research. At the same time, the addition of medium fermentation is mainly concentrated in the industrial fermentation process, and has not yet begun to be applied in the agricultural fermentation process. In this study, the medium was added to the agricultural fermentation process for the first time to explore the possibility of the application. The effects of adding cocoa medium to ferment on the chemical composition, sensory quality and surface microbial diversity of eggplant core cigar leaves were investigated.wrapper. Method: With Dexue 7' as the experimental material, the changes of main chemical components of wrapper fermented with water and cocoa medium were determined, and microbial community structure on the surface and relative abundance of cigar leaves at different turning periods were analyzed, and the functional genes were predicted. The results of the study were as follows: 1) The results of sensory evaluation showed that the addition of cocoa medium could highlight the aroma of bean, cocoa and coffee, improve the sweetness and fluency and the combustibility of cigar leaves. 2) The addition of cocoa medium increased the contents of proline and malic acid which were positively correlated with sensory quality, and decreased the contents of citric acid, linoleic acid, basic amino acids and aromatic amino acids which were negatively correlated with sensory quality. 3) The addition of cocoa medium increased the total amount of aroma components in cigar leaves, especially carotenoid degradation products, and changed the structural composition of some aroma substances in wrappercigar leaves. 4) The similarity of species composition between the water-added group and the cocoa-added group was higher, but the dominant microorganisms were more concentrated. Staphylococcus and Arthrobacter maintained a high relative abundance throughout the fermentation process, which may be the key microorganisms in the agricultural fermentation stage. 5) The addition of cocoa medium increased the expression abundance of related functional genes in cigar leaves, accelerated the fermentation process of cigar leaves, and bacteria played a major role in the fermentation process. Conclusion: Adding cocoa medium in the agricultural fermentation stage, the changes of bacterial community and dominant flora on the surface of cigar leaves are the main factors affecting their internal chemical components, and the addition of media has a positive effect on tobacco fermentation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa