Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pharmacol Res ; 170: 105701, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087353

RESUMO

Osimertinib, a third-generation EGFR tyrosine kinase inhibitor (TKI), is commonly used to treat EGFR-mutant non-small-cell lung cancer (NSCLC). However, acquired resistance to mutant EGFR (T790M) can evolve following osimertinib treatment. High reactive oxygen species (ROS) levels in lung cancer cells can influence heme levels and have an impact on osimertinib resistance. Here, we found that heme levels were increased in osimertinib resistant EGFR-mutant NSCLC cell lines and plasma heme levels were also elevated in osimertinib-treated EGFR-mutant NSCLC patients. The antimalarial drug dihydroartemisinin (DHA), which has anticancer effects and requires heme, was tested to determine its potential to revert osimertinib resistance. DHA downregulated the expression of heme oxygenase 1 and inhibited cell proliferation in osimertinib-resistant EGFR-mutant NSCLC cells (PC9-GR4-AZD1), which was further enhanced by addition of 5-aminolevulinic acid, protoporphyrin IX and hemin. DHA was synergistic with osimertinib in inhibiting cell proliferation and colony formation of all osimertinib-resistant cell lines tested. Combination treatment with osimertinib and DHA also increased the levels of ROS, downregulated the phosphorylation or protein levels of several RTKs that often are overexpressed in osimertinib-resistant EGFR-mutant NSCLC cells, and inhibited tumor growth without toxicity in a PC9-GR4-AZD1 xenograft mouse model. The results suggest that DHA is able to reverse the resistance to osimertinib in EGFR-mutant NSCLC by elevating ROS level and impair heme metabolism.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Artemisininas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Heme/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Commun Signal ; 17(1): 137, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660987

RESUMO

INTRODUCTION: p21-activated kinase 1 (PAK1) stimulates growth and metastasis in non-small cell lung cancer (NSCLC). Protein kinase C iota (PKCι) is an enzyme highly expressed in NSCLC, regulating PAK1 signaling. In the present study we explored whether the PKCι-PAK1 signaling pathway approach can be an efficient target in different types of NSCLC cell and mouse models. METHODS: The effect of IPA-3 (PAK1 inhibitor) plus auranofin (PKCι inhibitor) combination was evaluated by cell viability assay, colony formation and western blotting assay, using three types of NSCLC cell lines: EGFR or KRAS mutant adenocarcinoma and squamous cell carcinoma with PAK1 amplification. In addition, for clinical availability, screening for new PAK1 inhibitors was carried out and the compound OTSSP167 was evaluated in combination with auranofin in cell and mice models. RESULTS: The combination of IPA-3 or OTSSP167 plus auranofin showed high synergism for inhibiting cell viability and colony formation in three cell lines. Mechanistic characterization revealed that this drug combination abrogated expression and activation of membrane receptors and downstream signaling proteins crucial in lung cancer: EGFR, MET, PAK1, PKCι, ERK1/2, AKT, YAP1 and mTOR. A nude mouse xenograft assay demonstrated that this drug combination strongly suppressed tumor volume compared with single drug treatment. CONCLUSIONS: Combination of IPA-3 or OTSSP167 and auranofin was highly synergistic in EGFR or KRAS mutant adenocarcinoma and squamous cell carcinoma cell lines and decreased tumor volume in mice models. It is of interest to further test the targeting of PKCι-PAK1 signaling pathways in EGFR mutant, KRAS mutant and squamous NSCLC patients.


Assuntos
Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo , Células A549 , Adenocarcinoma/genética , Animais , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/antagonistas & inibidores
3.
JTO Clin Res Rep ; 2(3): 100113, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34589994

RESUMO

INTRODUCTION: DNA repair capacity, as exemplified by BRCA1 gene expression, is related with outcome to EGFR tyrosine kinase inhibitors in patients with EGFR-mutant NSCLC. Olaparib, a PARP inhibitor, reduces BRCA1 expression. Olaparib was tested in combination with gefitinib versus gefitinib single agent, as a first-line therapy for patients with EGFR-mutant NSCLC in the GOAL study (trial registration: NCT01513174). Here, we report the results of the biomarker-related prespecified secondary objectives of the GOAL study. METHODS: We evaluated the impact of BRCA1 mRNA expression in 91 patients with EGFR-mutant NSCLC. Of those 91 patients, 51 were randomized to treatment with gefitinib and 40 were randomized to treatment with gefitinib plus olaparib. We explored in vitro whether BRCA1 mRNA levels are related with outcome to gefitinib plus olaparib. The expression levels of 53BP1, CtIP, and AXL were also explored and correlated with the treatment outcome. RESULTS: Overall, as what happened in the GOAL study, no statistically significant difference was observed in median progression-free survival (PFS) between the two treatment arms, for the 91 patients of the present study (p = 0.2419). For patients with high BRCA1 mRNA expression (BRCA1-high group), median PFS was 12.9 months in the gefitinib plus olaparib arm, compared with 9.2 months in the gefitinib arm (p = 0.0449). In the gefitinib arm, median PFS was 9.1 months for the BRCA1-high group and 10.2 months for the BRCA1-low group (p = 0.0193). We observed a more pronounced synergism of gefitinib plus olaparib in cells with higher BRCA1 compared with those with low BRCA1 mRNA expression. CONCLUSIONS: High BRCA1 mRNA expression identified patients with NSCLC who benefited from gefitinib plus olaparib in the GOAL phase 2 clinical trial.

4.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516941

RESUMO

Treatment of advanced (metastatic) non-small-cell lung cancer (NSCLC) is currently mainly based on immunotherapy with antibodies against PD-1 or PD-L1, alone, or in combination with chemotherapy. In locally advanced NSCLC and in early resected stages, immunotherapy is also employed. Tumor PD-L1 expression by immunohistochemistry is considered the standard practice. Response rate is low, with median progression free survival very short in the vast majority of studies reported. Herein, numerous biological facets of NSCLC are described involving driver genetic lesions, mutations ad fusions, PD-L1 glycosylation, ferroptosis and metabolic rewiring in NSCLC and lung adenocarcinoma (LUAD). Novel concepts, such as immune-transmitters and the effect of neurotransmitters in immune evasion and tumor growth, the nascent relevance of necroptosis and pyroptosis, possible new biomarkers, such as gasdermin D and gasdermin E, the conundrum of K-Ras mutations in LUADs, with the growing recognition of liver kinase B1 (LKB1) and metabolic pathways, including others, are also commented. The review serves to charter diverse treatment solutions, depending on the main altered signaling pathways, in order to have effectual immunotherapy. Tumor PDCD1 gene (encoding PD-1) has been recently described, in equilibrium with tumor PD-L1 (encoded by PDCD1LG1). Such description explains tumor hyper-progression, which has been reported in several studies, and poises the fundamental criterion that IHC PD-L1 expression as a biomarker should be revisited.

5.
Lung Cancer ; 140: 42-45, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862576

RESUMO

OBJECTIVES: KRAS mutations are one of the most prevalent alterations in non-small cell lung cancer. However, patients with this driver alteration present heterogeneous clinical outcomes. In this study, we have explored the potential clinical impact of coexisting alterations in this subset of patients. MATERIALS AND METHODS: Samples from a cohort of 69 lung adenocarcinoma patients homogenously treated with platinum doublet as first-line therapy were evaluated using targeted next generation sequencing (NGS). Mutations and copy number alterations were assessed in 37 advanced KRAS-mutant (KRASm) and in 32 KRAS wild-type (KRASwt). RESULTS: TP53 was the most frequent additional alteration found in both cohorts. Interestingly, TP53 mutations were more frequent in KRASwt than in KRASm patients (80 % vs. 34 %; p <  0.05) as well as STK11 mutations (17 % vs 8 %, p=NS). FGFR3 mutations were only found concomitantly with KRASm (11 %). No genomic co-alteration had an impact on overall survival within the KRASm patients treated with chemotherapy. CONCLUSIONS: KRAS mutated lung adenocarcinoma is a heterogeneous entity and comprehensive characterization of co-alterations using NGS may lead to more accurate patient stratification.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Platina/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Seguimentos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Prognóstico , Taxa de Sobrevida
6.
JTO Clin Res Rep ; 1(4): 100084, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34589963

RESUMO

INTRODUCTION: EGFR mutation-positive lung adenocarcinoma (LUAD) displays impaired phosphorylation of ERK and Src-homology 2 domain-containing phosphatase 2 (SHP2) in comparison with EGFR wild-type LUADs. We hypothesize that SHP2 expression could be predictive in patients positive with resected EGFR mutation versus patients with EGFR wild-type LUAD. METHODS: We examined resected LUAD cases from Japan and Spain. mRNA expression levels of AXL, MET, CDCP1, STAT3, YAP1, and SHP2 were analyzed by quantitative reverse transcriptase polymerase chain reaction. The activity of SHP2 inhibitors plus erlotinib were tested in EGFR-mutant cell lines and analyzed by cell viability assay, Western blot, and immunofluorescence. RESULTS: A total of 50 of 100 EGFR mutation-positive LUADs relapsed, among them, patients with higher SHP2 mRNA expression revealed shorter progression-free survival, in comparison with those having low SHP2 mRNA (hazard ratio: 1.83; 95% confidence interval: 1.05-3.23; p = 0.0329). However, SHP2 was not associated with prognosis in the remaining 167 patients with wild-type EGFR. In EGFR-mutant cell lines, the combination of SHP099 or RMC-4550 (SHP2 inhibitors) with erlotinib revealed synergism via abrogation of phosphorylated AKT (S473) and ERK1/2 (T202/Y204). Although erlotinib translocates phosphorylated SHP2 (Y542) into the nucleus, either RMC-4550 alone, or in combination with erlotinib, relocates SHP2 into the cytoplasm membrane, limiting AKT and ERK1/2 activation. CONCLUSIONS: Elevated SHP2 mRNA levels are associated with recurrence in resected EGFR mutation-positive LUADs, but not in EGFR wild-type. EGFR tyrosine kinase inhibitors can enhance SHP2 activation, hindering adjuvant therapy. SHP2 inhibitors could improve the benefit of adjuvant therapy in EGFR mutation-positive LUADs.

7.
Transl Lung Cancer Res ; 9(5): 1810-1821, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209603

RESUMO

BACKGROUND: The role of MET alterations in non-small cell lung cancer (NSCLC) is increasing and several targeted agents are under evaluation. MET exon 14 skipping mutations and MET amplifications are associated with potential sensitivity to MET inhibition, though resistance mechanisms are emerging. In MET addicted cells, MET inhibition leads to activation of proviral integration site for Moloney murine leukemia virus-1 (PIM1). PIM1 and proto-oncogene tyrosine-protein kinase Src (SRC) can regulate the expression of receptor tyrosine kinases (RTKs), potentially inducing resistance to MET inhibition through cross-activation. METHODS: We evaluated the activity of class I-II MET inhibitors, the SRC inhibitor dasatinib, and pan-PIM inhibitors in four MET addicted cell lines. We assessed the effect of the dual MET/PIM and MET/SRC inhibition on cell viability and at the protein level. We evaluated RNA expression profiles of the cell lines. Advanced NSCLCs were also screened for MET alterations. RESULTS: All cell lines were sensitive to class I-II MET inhibitors. All cell lines were resistant to single PIM and SRC inhibition. Dual MET/PIM inhibition was synergistic or additive in MET amplified cell lines and dual MET/SRC inhibition was highly synergistic in all MET addicted cell lines. The addition of an SRC inhibitor partially prevents the RTKs cross-activation. MET alterations were found in 9 out of 97 evaluable samples (9.3%); median overall survival in MET altered patients was 5 months (95% CI, 3 m-NA). CONCLUSIONS: We identified a potential role of PIM inhibition in MET amplified tumors and of SRC inhibition in MET addicted tumors. Potential applications of this new treatment strategy warrant further evaluation.

8.
Clin Lung Cancer ; 10(1): 47-52, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19289372

RESUMO

BACKGROUND: Molecular markers can help identify patients with early-stage non-small-cell lung cancer (NSCLC) with a high risk of relapse. Excision repair cross-complementing 1 (ERCC1), Xeroderma pigmentosum group G (XPG), and breast cancer 1 (BRCA1) are involved in DNA damage repair, whereas ribonucleotide reductase M1 (RRM1) is implicated in DNA synthesis. Expression levels of these molecules might therefore have a prognostic role in lung cancer. PATIENTS AND METHODS: We examined ERCC1, RRM1, XPG, and BRCA1 mRNA levels by real-time quantitative polymerase chain reaction in 54 patients with stage IB-IIB resected NSCLC. A strong correlation was observed between the 4 genes. RESULTS: For patients with low BRCA1, regardless of XPG mRNA expression levels, disease-free survival (DFS) was not reached. For patients with intermediate/high BRCA1 and high XPG, DFS was 50.7 months. However, for patients with intermediate/high BRCA1 and low/intermediate XPG, DFS decreased to 16.3 months (P = .002). Similar differences were observed in overall survival, with median survival not reached for patients with low BRCA1, regardless of XPG levels, or for patients with intermediate/high BRCA1 and high XPG. Conversely, for patients with intermediate/high BRCA1 levels and low/intermediate XPG levels, median survival dropped to 25.5 months (P = .007). CONCLUSION: BRCA1 and XPG were identified as independent prognostic factors for both median survival and DFS. High BRCA1 mRNA expression confers poor prognosis in early NSCLC, and the combination of high BRCA1 and low XPG expression still further increases the risk of shorter survival. These findings can help optimize the customization of adjuvant chemotherapy.


Assuntos
Proteína BRCA1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA1/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Proteínas de Ligação a DNA/genética , Intervalo Livre de Doença , Endonucleases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Prognóstico , RNA Mensageiro/genética , Taxa de Sobrevida , Fatores de Transcrição/genética
9.
Clin Cancer Res ; 14(15): 4794-9, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676750

RESUMO

PURPOSE: Adjuvant treatment may improve survival in early-stage squamous cell carcinoma (SCC) of the lung; however, the absolute gain is modest and mainly limited to stage II-IIIA. Current staging methods are imprecise indications of prognosis, but high-risk patients can be identified by gene expression profiling and considered for adjuvant therapy. EXPERIMENTAL DESIGN: The expression of 29 genes was assessed by reverse transcriptase quantitative PCR in frozen primary tumor specimens obtained from 66 SCC patients who had undergone surgical resection. Expression values were dichotomized using the median as a cutoff value. We used a risk score to develop a gene expression model for the prediction of survival. RESULTS: The univariate analysis of gene expression in the training cohort identified 10 genes with significant prognostic value: CSF1, EGFR, CA IX, PH4, KIAA0974, ANLN, VEGFC, NTRK1, FN1, and INR1. In the multivariate Cox model, CSF1 (hazard ratio, 3.5; P = 0.005), EGFR (hazard ratio, 2.7; P = 0.02), CA IX (hazard ratio, 0.2; P < 0.0001), and tumor size >4 cm (hazard ratio, 2.7; P = 0.02) emerged as significant markers for survival. The high prognostic value of a risk score based on the expression of the three genes (CSF1, EGFR, and CA IX) was positively validated in a separate cohort of 26 patients in an independent laboratory (P = 0.05). CONCLUSIONS: The three-gene signature is strongly associated with prognosis in early-stage SCC. Positive independent validation suggests its suitability for selecting SCC patients with an increased risk of death who might benefit from adjuvant treatment.


Assuntos
Antígenos de Neoplasias/biossíntese , Anidrases Carbônicas/biossíntese , Carcinoma de Células Escamosas/metabolismo , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Fator Estimulador de Colônias de Macrófagos/biossíntese , Adulto , Idoso , Anidrase Carbônica IX , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos
10.
Expert Opin Biol Ther ; 19(5): 457-467, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763126

RESUMO

INTRODUCTION: Biological therapies, with immunotherapy leading the field, have arisen as one of the quickest expanding areas of research for cancer treatment in the last few years. The clear benefits for patients are undeniable, satisfying the long-awaited necessity of a target-specific therapy. However, its full potential remains still unexploited due to a lack of response in a majority of patients and pending reliable biomarkers. AREAS COVERED: This review provides a summarizing view of the current biological therapies for lung cancer, focusing on immunotherapy - including immune checkpoint inhibitors, adoptive cell therapy and vaccines available in clinical/pre-clinical settings or currently in development. A thorough analysis of the technical and functional differences among all therapies is provided, along with a critical discussion of prospective treatments and potential biomarkers. EXPERT OPINION: The use of immunotherapy in the treatment of cancer has provided clear benefits for patients. Still, exploitation of the full potential of immune checkpoint inhibitors alone or in combination, or adoptive cell therapies is hampered by, amongst other reasons, the lack of reliable biomarkers and possible adverse immune effects. We postulate that the development of liquid biopsy-based diagnostics will help to overcome these limitations in the near future.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Pulmonares/terapia , Antígeno CTLA-4/imunologia , Humanos , Sistema Imunitário/metabolismo , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
Expert Rev Clin Pharmacol ; 12(9): 831-840, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31356117

RESUMO

Introduction: Different EGFR tyrosine kinase inhibitors (TKIs) are currently approved for the first-line treatment of NSCLC patients with EGFR mutations. Dacomitinib is an orally administered, second-generation pan-HER inhibitor that has shown to improve PFS and OS compared to the first-generation TKI gefitinib and is the most recent inhibitor to be approved in this setting. Areas covered: This article will review relevant literature regarding preclinical findings and clinical data from phase I-III trials of dacomitinib. We particularly discuss the mechanism of action of dacomitinib and its clinical efficacy and toxicity as a novel, first-line therapeutic option for EGFR-mutated NSCLC. Expert commentary: The therapeutic landscape for EGFR-mutated NSCLC has been greatly expanded. In the first-line setting, we have currently first-, second- and third-generation EGFR TKIs available and some combination strategies, including EGFR TKIs with anti-angiogenic drugs or chemotherapy, have also shown to be effective. However, more data are needed to define the optimal therapeutic sequencing of all these targeted agents and combinations. In this view, molecular profiling of tumor tissues and liquid biopsies may provide novel insights on mechanisms of resistance to different drugs and guide treatment decisions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinonas/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , Mutação , Metástase Neoplásica , Intervalo Livre de Progressão , Quinazolinonas/efeitos adversos , Quinazolinonas/farmacologia , Taxa de Sobrevida
12.
Transl Lung Cancer Res ; 8(4): 340-351, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31555510

RESUMO

BACKGROUND: Osimertinib improve therapy for non-small cell lung cancer (NSCLC). However, invariable acquired resistance appears. METHODS: MTT assay was used to analyze cell viability. Protein expression and activation was detected by Western blotting. In addition, the effects of heat shock protein 90 (Hsp90) inhibitors and osimertinib were studied in colony formation assays. RESULTS: Our laboratory generated osimertinib resistant cell lines from PC9 cell line and overexpression or activation of several proteins was detected. Hsp90 inhibitors, ganetespib and luminespib, inhibited cell viability and colony formation in H1975, PC9 and PC9-derived osimertinib-resistant cell lines and combination of these inhibitors with osimertinib achieved to enhance this cell viability and colony formation inhibition. Luminespib downregulated the expression of the several proteins involved in osimertinib-resistance and the combination of this compound plus osimertinib caused an important decrease of expression of several of these proteins, such as Stat3, Yap, Akt, EGFR and Met. Osimertinib activated the phosphorylation of several membrane receptors and downstream molecules that was partially inhibited by luminespib. In addition, a lung cancer patient with an EGFR eon 20 mutation had a partial radiographic response to ganetespib. CONCLUSIONS: Hsp90 inhibitors and osimertinib exhibits a good efficiency to inhibit cell viability, colony formation and inhibits expression and activation of proteins involved in osimertinib-resistance and may represent an effective strategy for NSCLC with intrinsic resistance to osimertinib inhibition.

13.
Expert Rev Respir Med ; 13(10): 1019-1028, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31411906

RESUMO

Introduction: The therapy of patients with lung adenocarcinoma has significantly changed after the discovery of epidermal growth factor receptor (EGFR) mutations. EGFR mutations occur in 10-15% of Caucasian lung cancer patients and are associated with favorable outcome to orally administered EGFR tyrosine kinase inhibitors (TKIs), like erlotinib. However, as soon as the tumor cells are under the pressure of the specific inhibitor, compensatory signaling pathways are activated and resistance emerges. Areas covered: In this review we will focus on the mechanisms of resistance to the first-generation EGFR TKI, erlotinib, and will mainly summarize the findings throughout the last 10 years in the field of EGFR-mutant lung cancer. Expert opinion: Widespread research has been performed and several mechanisms of resistance to EGFR TKIs, especially first- and second-generation, have been identified. Still, no adequate combinatory therapies have received regulatory approval for the treatment of EGFR-mutant patients at the time of resistance. The third-generation EGFR TKI, osimertinib has been approved for patients whose tumor has become resistant through the secondary T790M resistant EGFR mutation. The identification of the mechanisms of resistance and the application of the adequate therapy to each patient is still an unmet need.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Reparo do DNA , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Mutação
14.
EBioMedicine ; 39: 207-214, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473379

RESUMO

BACKGROUND: The activation of multiple signaling pathways jeopardizes the clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutation positive non-small cell lung cancer (NSCLC). Integrin-linked kinase (ILK) regulates the interactions between tumor cells and extracellular environment to activate signaling pathways and promote cell proliferation, migration, and epithelial-mesenchymal transition. Src homology 2 domain-containing phosphatase 2 (SHP2) is essential for receptor tyrosine kinase signaling and mitogen-activated protein kinase (MAPK) pathway activation. METHODS: We analyzed tumor ILK, ß-receptor subunit glycoprotein 130 (gp130), SHP2, and stromal hepatocyte growth factor (HGF) and interleukin-6 (IL-6) mRNA expression in baseline tumor specimens of advanced EGFR-mutation positive NSCLC patients treated with EGFR TKIs. RESULTS: ILK, when highly expressed, was an independent poor prognostic factor for the progression-free survival of the patients, both in the univariate (hazard ratio [HR for disease progression, 2.49; 95% CI, 1.37-4.52; P = .0020]) and in the multivariate (HR 3.74; 95% CI, 1.33-10.56; P = .0126) Cox regression model. Patients with high SHP2 expression had an almost 13-month shorter progression-free survival (P = .0094) and an 18-month shorter overall survival (P = .0182) in comparison to those with low SHP2 mRNA expression. INTERPRETATION: The levels of ILK and SHP2 could be predictive for upfront combinatory therapy of EGFR TKIs plus SHP2 or ILK inhibitors. FUND: A grant from La Caixa Foundation, an Instituto de Salud Carlos III grant (RESPONSE, PIE16/00011), an Instituto de Salud Carlos III grant (PI14/01678), a Marie Sklodowska-Curie Innovative Training Networks European Grant (ELBA No 765492) and a Spanish Association Against Cancer (AECC) grant (PROYE18012ROSE).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Regulação para Cima , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Interleucina-6/genética , Sistema de Sinalização das MAP Quinases , Masculino , Mutação , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Análise de Regressão
15.
Ann Transl Med ; 7(22): 651, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31930052

RESUMO

BACKGROUND: Recurrent and metastatic head and neck squamous cell carcinoma (HNSCC) has a dismal prognosis with limited progression-free survival and overall survival, even when treated with different combinations of chemotherapy, targeted therapies and immunotherapy. We explored in vitro and in vivo the effect of the epidermal growth factor receptor (EGFR) inhibitor, osimertinib, alone and in combination with dihydroartemisinin (DHA) in HNSCC. METHODS: The combination of osimertinib with DHA was tested in the FaDu and CAL27 HNSCC cell lines. Tumor cell proliferation assays were conducted in cultured cells and mouse xenografts. Western blotting analysis of related signal pathways was performed to investigate the molecular mechanisms of the inhibitory effect of DHA and the combination. Other compounds, which inhibit signal transducer and activator of transcription 3 (STAT3), Src-family kinases (SFKs), sphingosine kinase 1 (SPHK1), or the receptor tyrosine kinase (RTK) AXL were also combined with osimertinib in vitro. RESULTS: Osimertinib exerted synergistic cytotoxicity toward FaDu and CAL27 HNSCC cells when combined with DHA. DHA reversed the osimertinib-induced STAT3 and Src phosphorylation. The double combination inhibited AXL expression. The anticancer potential of osimertinib plus DHA combination was validated in vivo on FaDu and CAL27 xenografts in mice without notable side effects. CONCLUSIONS: The results illustrate that the combinatory therapy of osimertinib and DHA, as a repurposing anticancer drug, could be a novel therapeutic strategy for recurrent and/or metastatic HNSCC patients. The findings strongly indicate that a clinical trial is warranted to confirm the benefit of the combination.

16.
J Thorac Oncol ; 14(2): 304-310, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472259

RESUMO

INTRODUCTION: Partner and localizer of BRCA2 (PALB2) is essential for homologous recombination repair. We examined mRNA levels of DNA repair genes, including partner and localizer of BRCA2 gene (PALB2), ring finger protein 8 gene (RNF8), replication timing regulatory factor 1 gene (RIF1), ATM serine/threonine kinase gene (ATM), and tumor protein p53 binding protein 1 gene (53BP1) as predictive biomarkers for cisplatin-docetaxel in the European phase III BRCA1, DNA repair associated (BRCA1)-receptor-associated protein 80 (RAP80) expression customization (BREC) phase III clinical trial (ClinicalTrials.gov identifier NCT00617656). METHODS: The study was a prespecified secondary objective of the BREC trial. We assessed mRNA levels of PALB2 and four more DNA repair genes (RNF8, RIF1, ATM and 53BP1) as biomarkers in tissue from 177 patients with cisplatin-docetaxel-treated NSCLC. We examined the relationship of gene expression levels with progression-free survival, overall survival, and response. RESULTS: In 177 patients with NSCLC (who had a median age of 62 years and included 140 men and 91 patients with adenocarcinoma), only high PALB2 mRNA expression was predictive in the progression-free survival Cox regression analysis (hazard ratio = 0.63, 95% confidence interval: 0.42-0.83, p = 0.0080). PALB2 was also predictive of overall survival (hazard ratio = 0.68, 95% confidence interval: 0.42-0.90, p = 0.0266). Among the 158 patients evaluable for response, high PALB2 mRNA expression was predictive of response to cisplatin-docetaxel. Specifically, an objective response rate of 77% to cisplatin-docetaxel was observed for patients with high PALB2 mRNA expression compared with a rate of only 23 % for those with low PALB2 mRNA expression (p = 0.0448). CONCLUSIONS: High PALB2 mRNA expression identified patients with NSCLC who significantly benefited from cisplatin-docetaxel chemotherapy in the European BREC phase III clinical trial. The combination of chemotherapy with immunotherapy will become the standard of care, and a predictive marker of response to chemotherapy may accurately guide therapeutic decision making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , RNA Mensageiro/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Biomarcadores/metabolismo , Cisplatino/administração & dosagem , Proteínas de Ligação a DNA/genética , Docetaxel/administração & dosagem , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Proteínas de Ligação a Telômeros/genética , Resultado do Tratamento , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
17.
EBioMedicine ; 29: 112-127, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433983

RESUMO

Epidermal growth factor receptor (EGFR)-mutation-positive non-smallcell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p=0.0407) and overall survival (hazard ratio of 2.23, p=0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing.


Assuntos
Antígenos CD/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Moléculas de Adesão Celular/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Mutação , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Moléculas de Adesão Celular/agonistas , Sobrevivência Celular , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas de Neoplasias/agonistas , Proteômica/métodos , Proteínas Proto-Oncogênicas/agonistas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
19.
Nat Cancer ; 3(4): 518, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35379985
20.
Oncotarget ; 8(29): 47305-47316, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521301

RESUMO

Gefitinib, erlotinib or afatinib are the current treatment for non-small-cell lung cancer (NSCLC) harboring an activating mutation of the epidermal growth factor receptor (EGFR), but less than 5% of patients achieve a complete response and the median progression-free survival is no longer than 12 months. Early adaptive resistance can occur as soon as two hours after starting treatment by activating signal transducer and activation of transcription 3 (STAT3) signaling. We investigated the activation of STAT3 in a panel of gefitinib-sensitive EGFR mutant cell lines, and gefitinib-resistant PC9 cell lines developed in our laboratory. Afatinib has great activity in gefitinib-sensitive as well as in gefitinib-resistant EGFR mutant NSCLC cell lines. However, afatinib therapy causes phosphorylation of STAT3 tyrosine 705 (pSTAT3Tyr705) and elevation of STAT3 and RANTES mRNA levels. The combination of afatinib with TPCA-1 (a STAT3 inhibitor) ablated pSTAT3Tyr705 and down-regulated STAT3 and RANTES mRNA levels with significant growth inhibitory effect in both gefitinib-sensitive and gefitinib-resistant EGFR mutant NSCLC cell lines. Aldehyde dehydrogenase positive (ALDH+) cells were still observed with the combination at the time that Hairy and Enhancer of Split 1 (HES1) mRNA expression was elevated following therapy. Although the combination of afatinib with STAT3 inhibition cannot eliminate the potential problem of a remnant cancer stem cell population, it represents a substantial advantage and opportunity to further prolong progression free survival and probably could increase the response rate in comparison to the current standard of single therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Afatinib , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa