Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(4): 100, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933062

RESUMO

Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Lapatinib , Mitocôndrias , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Lapatinib/farmacologia , Camundongos Knockout , Mitocôndrias/patologia , Transição Epitelial-Mesenquimal
2.
Bioorg Chem ; 98: 103580, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32005482

RESUMO

The design and synthesis of a number of new imidazo[4,5-b]pyridines is described. The heterocyclic scaffold possesses 6-chloro- or 5,6-dichloro-substitution and bears various 2-alkylamino-methyl or ethyl groups. The corresponding N1 and N3-tosylates are also presented. The anti-HBV activity of the compounds was evaluated in HBV infectious system at the level of HBV rcDNA secretion and CC50, EC50 and selectivity index values were determined. The tosylates showed low antiviral potency and relatively high cytotoxicity, on the contrary, a number of 2,5 and/or-6-substituted imidazopyridines, mainly those belonging to the 6-chloroimidazo[4,5-b]pyridine series, were endowed with a very interesting profile and were further investigated. The most promising among them, along with the reduction of the secreted HBV rcDNA, also caused a reduction in HBV cccDNA and pgRNA levels, with a concomitant accumulation of the intracellular encapsidated rcDNA. Surprisingly, the most active 2-diethylaminoethyl-substituted derivative (21d), was highly competitive to interferon.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Vírus da Hepatite B/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Antivirais/síntese química , Antivirais/química , DNA Viral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imidazóis/síntese química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
3.
Adv Sci (Weinh) ; 11(15): e2306027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353396

RESUMO

Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteômica , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral
4.
Viruses ; 14(3)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336971

RESUMO

Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.


Assuntos
Dengue , Dopamina , Catecolaminas/metabolismo , Dopamina/metabolismo , Hepatócitos/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral
5.
PLoS One ; 12(1): e0170260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107409

RESUMO

Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.


Assuntos
Malária/enzimologia , Peptídeo Hidrolases/genética , Plasmodium/enzimologia , Sequência de Aminoácidos , Animais , Núcleo Celular/enzimologia , Modelos Animais de Doenças , Eritrócitos/parasitologia , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/química , Plasmodium/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa