RESUMO
The Austronesian Diaspora is a 5,000-year account of how a small group of Taiwanese farmers expanded to occupy territories reaching halfway around the world. Reconstructing their detailed history has spawned many academic contests across many disciplines. An outline orthodox version has eventually emerged but still leaves many unanswered questions. The remarkable power of whole-genome technology has now been applied to people across the entire region. This review gives an account of this era of genetic investigation and discusses its many achievements, including revelation in detail of many unexpected patterns of population movement and the significance of this information for medical genetics.
Assuntos
Genética Populacional , Migração Humana , Povo Asiático , Genômica , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Multiphenotype genome-wide association studies (GWAS) may reveal pleiotropic genes, which would remain undetected using single phenotype analyses. Analysis of large pedigrees offers the added advantage of more accurately assessing trait heritability, which can help prioritise genetically influenced phenotypes for GWAS analysis. In this study we performed a principal component analysis (PCA), heritability (h2) estimation and pedigree-based GWAS of 37 cardiovascular disease -related phenotypes in 330 related individuals forming a large pedigree from the Norfolk Island genetic isolate. PCA revealed 13 components explaining >75% of the total variance. Nine components yielded statistically significant h2 values ranging from 0.22 to 0.54 (P<0.05). The most heritable component was loaded with 7 phenotypic measures reflecting metabolic and renal dysfunction. A GWAS of this composite phenotype revealed statistically significant associations for 3 adjacent SNPs on chromosome 1p22.2 (P<1x10-8). These SNPs form a 42kb haplotype block and explain 11% of the genetic variance for this renal function phenotype. Replication analysis of the tagging SNP (rs1396315) in an independent US cohort supports the association (P = 0.000011). Blood transcript analysis showed 35 genes were associated with rs1396315 (P<0.05). Gene set enrichment analysis of these genes revealed the most enriched pathway was purine metabolism (P = 0.0015). Overall, our findings provide convincing evidence for a major pleiotropic effect locus on chromosome 1p22.2 influencing risk of renal dysfunction via purine metabolism pathways in the Norfolk Island population. Further studies are now warranted to interrogate the functional relevance of this locus in terms of renal pathology and cardiovascular disease risk.
Assuntos
Doenças Cardiovasculares/genética , Pleiotropia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/patologia , Feminino , Haplótipos , Humanos , Masculino , Melanesia , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente PrincipalRESUMO
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Assuntos
Doenças Cardiovasculares/genética , Mapeamento Cromossômico , Expressão Gênica , Locos de Características Quantitativas , Doenças Cardiovasculares/metabolismo , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Melanesia , Fenótipo , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Característica Quantitativa Herdável , Fatores de Risco , Transcrição GênicaRESUMO
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Maori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Maori and 34 Polynesians. Eighty KIR variants, including four 'new' alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Maori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Maori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Maori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.
Assuntos
Antígenos HLA-B/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , População/genética , Receptores KIR/genética , Alelos , Haplótipos/genética , Humanos , Nova Zelândia , PolinésiaRESUMO
Variation in the human monoamine oxidase A (MAO-A) gene can influence neurotransmittor levels and is thought to have a role in many behavioral traits. The genetic architecture of MAO-A is known to vary across different geographic subgroups. Previous studies have reported evidence for positive selection within the MAO-A gene region in seven ethnic groups: Pygmy, Aboriginal Taiwanese, Chinese, Japanese, Mexican and Russian. Polynesian populations have not been tested and repeated founder effects due to the island-hopping voyages of Polynesians across the South Pacific suggest a unique demographic history exists at the MAO-A gene, perhaps including selective effects. To explore this, we genotyped 13 key single-nucleotide polymorphisms (SNPs) spanning MAO-A gene as well as the functional polymorphism (MAO-A-uVNTR) in 47 unrelated Maori individuals. A comparison of genetic variation between Maori and non-Maori groups found a substantial reduction in genetic diversity at the MAO-A gene locus and an increase in the frequency of the most common MAO-A gene variant in the Maori group. Results of this study support previous findings and also point toward a 5-SNP haplotype that may have been influenced by selective effects in the Maori population. Full-sequence data for MAO-A in a large cohort are now required to conclusively determine whether MAO-A has undergone positive selection in Polynesians. Overall, these new data describe a unique demographic history for the MAO-A gene in the Maori population and will be helpful for studies wishing to investigate MAO-A as a candidate gene for influencing behavioral traits in the Polynesians.
Assuntos
Emigração e Imigração , Repetições Minissatélites/genética , Monoaminoxidase/genética , Mutação , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Genótipo , Haplótipos , Humanos , Masculino , Nova ZelândiaRESUMO
A new era presently dawns for medical genetics featuring individualised whole genome sequencing and promising personalised medical genetics. Accordingly, we direct readers attention to the continuing value of allele frequency data from Genome-Wide Association Surveys (GWAS) and single gene surveys in well-defined ethnic populations as a guide for best practice in diagnosis, therapy, and prescription. Supporting evidence is drawn from our experiences working with Austronesian volunteer subjects across the Western Pacific. In general, these studies show that their gene pool has been shaped by natural selection and become highly diverged from those of Europeans and Asians. These uniquely evolved patterns of genetic variation underlie contrasting schedules of disease incidence and drug response. Thus, recognition of historical bonds of kinship among Austronesian population groups across the Asia Pacific has distinct public health advantages from a One Health perspective. Other than diseases that are common among them like gout and diabetes, Austronesian populations face a wide range of climate-dependent infectious diseases including vector-borne pathogens as they are now scattered across the Pacific and Indian Oceans. However, we caution that the value of genetic survey data in Austronesians (and other groups too) is critically dependent on the accuracy of attached descriptive information in associated metadata, including ethnicity and admixture.
RESUMO
The mosquito Aedes aegypti is the primary vector of the dengue, yellow fever, and chikungunya viruses. Evidence shows that Ae. aegypti males are polyandrous whereas Ae. aegypti females are monandrous in mating. However, the degree to which Ae. aegypti males and females can mate with different partners has not been rigorously tested. Therefore, this study examined the rates of polyandry via parentage assignment in three sets of competitive mating experiments using wild-type male and female Ae. aegypti. Parentage assignment was monitored using nine microsatellite DNA markers. All Ae. aegypti offspring were successfully assigned to parents with 80% or 95% confidence using CERVUS software. The results showed that both male and female Ae. aegypti mated with up to 3-4 different partners. Adults contributed differentially to the emergent offspring, with reproductive outputs ranging from 1 to 25 viable progeny. This study demonstrates a new perspective on the capabilities of male and female Ae. aegypti in mating. These findings are significant because successful deployment of reproductive control methods using genetic modification or sterile Ae. aegypti must consider the following criteria regarding their mating fitness: 1) choosing Ae. aegypti males that can mate with many different females; 2) testing how transformed Ae. aegypti male perform with polyandrous females; and 3) prioritizing the selection of polyandrous males and/or females Ae. aegypti that have the most offspring.
Assuntos
Aedes , Aedes/genética , Animais , Feminino , Masculino , Repetições de Microssatélites , Mosquitos Vetores/genética , Reprodução , Comportamento Sexual AnimalRESUMO
Numerous studies show the importance of social understanding in addressing multifaceted conservation issues. Building on a conservation planning framework, this study examines the social dimensions of wildlife conservation in Kinabatangan, Sabah, Malaysia. It employs a qualitative approach by conducting in-depth, semi-structured interviews with sixty informants drawn from local community members, government officials, tourism operators, non-government organizations, and the private sector. Our results show that the incidence of human-wildlife conflicts has reduced in the region, but that conflicts among stakeholders themselves about wildlife still remain a significant threat for attaining successful conservation outcomes. Further stakeholder perceptions of increased wildlife numbers often contrast with actual counts returned by periodical surveys conducted by conservation agencies, e.g., showing a 30% decline of orangutans and a 29% decline of gibbon abundance. This shows that evidence-based conservation messages have not been communicated well. The study has implications for enhancing social values among conservation players, promoting local community empowerment and revising conservation awareness programs.
RESUMO
Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small "Austronesian" genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there.
Assuntos
Deleção de Genes , Marcadores Genéticos , Genética Populacional , Geografia , Repetições de Microssatélites/genética , Mutagênese Insercional , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Alelos , Teorema de Bayes , DNA Mitocondrial/genética , Emigração e Imigração , Frequência do Gene , Deriva Genética , Ligação Genética , Variação Genética , Genoma Humano , Haplótipos , Heterozigoto , Humanos , Idioma , Modelos Genéticos , Filogenia , Polimorfismo GenéticoRESUMO
The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ss-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots.
Assuntos
Psittaciformes/genética , Animais , Teorema de Bayes , Evolução Biológica , Primers do DNA/química , DNA Mitocondrial/genética , Ecologia , Evolução Molecular , Fósseis , Especiação Genética , Variação Genética , Modelos Genéticos , Filogenia , Fatores de TempoRESUMO
Groundwater is a major source of New Zealand's water supply and supports base flows in rivers. Microbial communities in groundwater ecosystems mediate biogeochemical processes, and it is therefore crucial to understand microbial diversity in these ecosystems. We analysed bacterial assemblages from 35 New Zealand groundwater monitoring sites with varying hydrogeochemical conditions across the country. Proteobacteria was the most abundant phylum, and Variovorax represented the most common taxon. Pseudomonas, Burkholderia, Acidovorax, Janthinobacterium, Polaromonas and Caulobacter were the other common taxa. There was no Operational Taxonomic Unit (OTU) that was found in every one of the 35 samples. Here, we introduce a framework that has potential utility for groundwater ecosystem management, where the samples with similar microbial communities are grouped together into 'bioclusters'. Metabolic inferences derived from the taxonomic data were used to predict the oxygen requirements, metabolic potential and bacterial energy sources of each biocluster. Groundwater chemistry explains 59% of the variation in the relative abundance of all OTUs, with NO3-N, pH, DO, NH4-N, Fe, Br and SO4 displaying the strongest relationships to bioclusters. We propose that the biocluster framework, coupled with metabolic inferences derived from the taxonomic data, may have application outside New Zealand for on-going monitoring of the health of groundwater ecosystems.
Assuntos
Bactérias/classificação , Água Subterrânea/microbiologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Água Subterrânea/química , Microbiota , Nova Zelândia , Proteobactérias/isolamento & purificaçãoRESUMO
Cytokines are involved in immune responses and the pathogenesis of various diseases. Allelic variations within the genes coding for various â¼30 kDa cytokine protein/glycoproteins have been reported for many populations and have been the subjects of many ancestry and health analyses. In this study, we typed 22 single nucleotide polymorphisms (SNPs) in 13 cytokine genes of 165 Orang Asli individuals by using sequence specific primer-polymerase chain reaction (SSP-PCR) assay. The volunteers came from all across the Peninsular of Malaysia and belong to six Orang Asli subgroups; Batek, Kensiu, Lanoh, Che Wong, Semai and Orang Kanaq. Here we report our general findings and original genotype data and their associated analyses (Hardy-Weinberg proportions, estimation of allele and haplotype frequencies) can be found in the supplementary files and will be held at Allele Frequency Net Database (AFND).
Assuntos
Citocinas/genética , Etnicidade/genética , Polimorfismo de Nucleotídeo Único , Alelos , Frequência do Gene , Haplótipos , Humanos , MalásiaRESUMO
Transplantation and transfusion are related and clinically important areas of multidisciplinary expertise, including pre-operative treatment, donor recruitment, tissue matching, and post-operative care. We have seen significant developments in these areas, especially in the late 20th and early 21st century. This paper reviews the latest advances in modern transplantation and transfusion medicine, including several new genetic markers (e.g., major histocompatibility complex class I chain-related gene A, killer cell immunoglobulin-like receptor, and human platelet antigens) for donor and recipient matching, genotyping platforms (e.g., next-generation sequencer and Luminex technology), donor recruitment strategies, and several clinical applications in which genotyping has advantages over agglutination tests (e.g., genotyping of weakly expressed antigens and determination of blood groups and human leukocyte antigen types in multi-transfused patients). We also highlight the roles of population studies and international collaborations in moving towards more efficient donor recruitment strategies.
Assuntos
Teste de Histocompatibilidade/tendências , Transplante de Órgãos/tendências , Doadores de Tecidos , Medicina Transfusional/tendências , Marcadores Genéticos , HumanosRESUMO
BACKGROUND: Human neutrophil antigens (HNA) are polymorphic and immunogenic proteins involved in the pathogenesis of neonatal alloimmune neutropenia, transfusion-related acute lung injury (TRALI) and transfusion-related alloimmune neutropenia. The characterisation of HNA at a population level is important for predicting the risk of alloimmunisation associated with blood transfusion and gestation and for anthropological studies. MATERIALS AND METHODS: Blood samples from 192 healthy, unrelated Malays were collected and genotyped using polymerase chain reaction-sequence specific primers (HNA-1, -3, -4) and polymerase chain reaction-restriction fragment length polymorphisms (HNA-5). The group comprised 30 Banjar, 37 Bugis, 51 Champa, 39 Jawa and 35 Kelantan Malays. RESULTS: The most common HNA alleles in the Malays studied were HNA-1a (0.641-0.765), -3a (0.676-0.867), -4a (0.943-1.000) and -5a (0.529-0.910). According to principal coordinate plots constructed using HNA allele frequencies, the Malay sub-ethnic groups are closely related and grouped together with other Asian populations. The risks of TRALI or neonatal neutropenia were not increased for subjects with HNA-1, -3 and -4 loci even for donor and recipient or pairs from different Malay sub-ethnic groups. Nonetheless, our estimates showed significantly higher risks of HNA alloimmunisation during pregnancy and transfusion between Malays and other genetically differentiated populations such as Africans and Europeans. DISCUSSION: This study reports HNA allele and genotype frequencies for the five Malay sub-ethnic groups living in Peninsular Malaysia for the first time. These Malay sub-ethnic groups show closer genetic relationships with other Asian populations than with Europeans and Africans. The distributions of HNA alleles in other lineages of people living in Malaysia (e.g. Chinese, Indian and Orang Asli) would be an interesting subject for future study.
Assuntos
Etnicidade/genética , Isoantígenos/genética , Neutrófilos/imunologia , Lesão Pulmonar Aguda/epidemiologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Alelos , Feminino , Frequência do Gene , Genótipo , Humanos , Isoanticorpos/biossíntese , Isoanticorpos/imunologia , Isoantígenos/análise , Malásia/epidemiologia , Masculino , Neutropenia/epidemiologia , Neutropenia/imunologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Gravidez , Risco , Reação TransfusionalRESUMO
The aboriginal populations of Peninsular Malaysia, also known as Orang Asli (OA), comprise three major groups; Semang, Senoi and Proto-Malays. Here, we analyzed for the first time KIR gene polymorphisms for 167 OA individuals, including those from four smallest OA subgroups (Che Wong, Orang Kanaq, Lanoh and Kensiu) using polymerase chain reaction-sequence specific primer (PCR-SSP) analyses. The observed distribution of KIR profiles of OA is heterogenous; Haplotype B is the most frequent in the Semang subgroups (especially Batek) while Haplotype A is the most common type in the Senoi. The Semang subgroups were clustered together with the Africans, Indians, Papuans and Australian Aborigines in a principal component analysis (PCA) plot and shared many common genotypes (AB6, BB71, BB73 and BB159) observed in these other populations. Given that these populations also display high frequencies of Haplotype B, it is interesting to speculate that Haplotype B may be generally more frequent in ancient populations. In contrast, the two Senoi subgroups, Che Wong and Semai are displaced toward Southeast Asian and African populations in the PCA scatter plot, respectively. Orang Kanaq, the smallest and the most endangered of all OA subgroups, has lost some degree of genetic variation, as shown by their relatively high frequency of the AB2 genotype (0.73) and a total absence of KIR2DL2 and KIR2DS2 genes. Orang Kanaq tradition that strictly prohibits intermarriage with outsiders seems to have posed a serious threat to their survival. This present survey is a demonstration of the value of KIR polymorphisms in elucidating genetic relationships among human populations.
Assuntos
Polimorfismo Genético , Receptores KIR/genética , Povo Asiático/genética , Genótipo , Haplótipos , Humanos , MalásiaRESUMO
In 1962, Thomas Kuhn famously argued that the progress of scientific knowledge results from periodic 'paradigm shifts' during a period of crisis in which new ideas dramatically change the status quo. Although this is generally true, Alec Jeffreys' identification of hypervariable repeat motifs in the human beta-globin gene, and the subsequent development of a technology known now as 'DNA fingerprinting', also resulted in a dramatic shift in the life sciences, particularly in ecology, evolutionary biology, and forensics. The variation Jeffreys recognized has been used to identify individuals from tissue samples of not just humans, but also of many animal species. In addition, the technology has been used to determine the sex of individuals, as well as paternity/maternity and close kinship. We review a broad range of such studies involving a wide diversity of animal species. For individual researchers, Jeffreys' invention resulted in many ecologists and evolutionary biologists being given the opportunity to develop skills in molecular biology to augment their whole organism focus. Few developments in science, even among the subsequent genome discoveries of the 21st century, have the same wide-reaching significance. Even the later development of PCR-based genotyping of individuals using microsatellite repeats sequences, and their use in determining multiple paternity, is conceptually rooted in Alec Jeffreys' pioneering work.
RESUMO
Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource.