Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 84(8): 2398-2407, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34264089

RESUMO

Commonly, false peyote refers to Lophophora diffusa. However, several other unrelated cacti go by this colloquial name. They either resemble "true" peyote, Lophophora williamsii, or are found in similar habitats. To date, over 40 different alkaloids have been isolated from the Lophophora genus. Of these, only the pharmacological actions of mescaline (1) have been extensively investigated. The major alkaloid in L. diffusa is pellotine (2), a tetrahydroisoquinoline (THIQ), which was briefly marketed as a sleeping aid around the beginning of the 20th century, following reports of its hypnotic properties in humans. Pharmacological experiments with the Lophophora THIQs were performed at the turn of the 20th century, whereas the chemical synthesis was not realized until several decades later. The biosynthetic pathways of the main Lophophora alkaloids were reported at the end of the 1960s. In this review, the relationship of the different "false peyotes" to L. williamsii, in regard to their alkaloid content, the bio- and chemical synthesis of the most relevant alkaloids, and their corresponding pharmacology will be outlined and discussed.


Assuntos
Cactaceae/química , Mescalina/química , Alcaloides/química , Alcaloides/farmacologia , Animais , Vias Biossintéticas , Cactaceae/classificação , Alucinógenos , Humanos , Mescalina/farmacologia , Estrutura Molecular , Medicamentos Indutores do Sono
2.
ACS Pharmacol Transl Sci ; 6(10): 1492-1507, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854625

RESUMO

Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa