Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Theor Biol ; 392: 23-34, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26723535

RESUMO

Antigenic sites in viral pathogens exhibit distinctive evolutionary dynamics due to their role in evading recognition by host immunity. Antigenic selection is known to drive higher rates of non-synonymous substitution; less well understood is why differences are observed between viruses in their propensity to mutate to a novel or previously encountered amino acid. Here, we present a model to explain patterns of antigenic reversion and forward substitution in terms of the epidemiological and molecular processes of the viral population. We develop an analytical three-strain model and extend the analysis to a multi-site model to predict characteristics of observed sequence samples. Our model provides insight into how the balance between selection to escape immunity and to maintain viability is affected by the rate of mutational input. We also show that while low probabilities of reversion may be due to either a low cost of immune escape or slowly decaying host immunity, these two scenarios can be differentiated by the frequency patterns at antigenic sites. Comparison between frequency patterns of human influenza A (H3N2) and human RSV-A suggests that the increased rates of antigenic reversion in RSV-A is due to faster decaying immunity and not higher costs of escape.


Assuntos
Antígenos Virais/imunologia , Evasão da Resposta Imune , Vírus da Influenza A Subtipo H3N2/imunologia , Modelos Imunológicos , Vírus Sinciciais Respiratórios/imunologia , Antígenos Virais/genética , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus Sinciciais Respiratórios/genética
2.
BMC Evol Biol ; 13: 244, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24199711

RESUMO

BACKGROUND: A major goal of molecular evolution is to determine how natural selection has shaped the evolution of a gene. One approach taken by methods such as KA/KS and the McDonald-Kreitman (MK) test is to compare the frequency of non-synonymous and synonymous changes. These methods, however, rely on the assumption that a change in frequency of one mutation will not affect changes in frequency of other mutations. RESULTS: We demonstrate that linkage between sites can bias measures of selection based on synonymous and non-synonymous changes. Using forward simulation of a Wright-Fisher process, we show that hitch-hiking of deleterious mutations with advantageous mutations can lead to overestimation of the number of adaptive substitutions, while background selection and clonal interference can distort the site frequency spectrum to obscure the signal for positive selection. We present three diagnostics for detecting these effects of linked selection and apply them to the human influenza (H3N2) hemagglutinin gene. CONCLUSION: Various forms of linked selection have characteristic effects on MK-type statistics. The extent of background selection, hitch-hiking and clonal interference can be evaluated using the diagnostic statistics presented here. The diagnostics can also be used to determine how well we expect the MK statistics to perform and whether one form of the statistic may be preferable to another.


Assuntos
Evolução Molecular , Ligação Genética , Mutação , Seleção Genética , Substituição de Aminoácidos , Códon , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética
3.
Comput Biol Chem ; 65: 178-184, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27647159

RESUMO

De novo assembly of bacterial genomes from next-generation sequencing (NGS) data allows a reference-free discovery of single nucleotide polymorphisms (SNP). However, substantial rates of errors in genomes assembled by this approach remain a major barrier for the reference-free analysis of genome variations in medically important bacteria. The aim of this report was to improve the quality of SNP identification in bacterial genomes without closely related references. We developed a bioinformatics pipeline (SnpFilt) that constructs an assembly using SPAdes and then removes unreliable regions based on the quality and coverage of re-aligned reads at neighbouring regions. The performance of the pipeline was compared against reference-based SNP calling for Illumina HiSeq, MiSeq and NextSeq reads from a range of bacterial pathogens including Salmonella, which is one of the most common causes of food-borne disease. The SnpFilt pipeline removed all false SNP in all test NGS datasets consisting of paired-end Illumina reads. We also showed that for reliable and complete SNP calls, at least 40-fold coverage is required. Analysis of bacterial isolates associated with epidemiologically confirmed outbreaks using the SnpFilt pipeline produced results consistent with previously published findings. The SnpFilt pipeline improves the quality of de-novo assembly and precision of SNP calling in bacterial genomes by removal of regions of the assembly that may potentially contain assembly errors. SnpFilt is available from https://github.com/LanLab/SnpFilt.


Assuntos
Bactérias/genética , Genoma Bacteriano , Polimorfismo de Nucleotídeo Único
4.
Virus Evol ; 1(1): vev013, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27774285

RESUMO

Viruses evolve rapidly, providing a unique system for understanding the processes that influence rates of molecular evolution. Neutral theory posits that the evolutionary rate increases linearly with the mutation rate. The occurrence of deleterious mutations causes this relationship to break down at high mutation rates. Previous studies have identified this as an important phenomenon, particularly for RNA viruses which can mutate at rates near the extinction threshold. We propose that in addition to mutation dynamics, viral within-host dynamics can also affect the between-host evolutionary rate. We present an analytical model that predicts the neutral evolution rate for viruses as a function of both within-host parameters and deleterious mutations. To examine the effect of more detailed aspects of the virus life cycle, we also present a computational model that simulates acute virus evolution using target cell-limited dynamics. Using influenza A virus as a case study, we find that our simulation model can predict empirical rates of evolution better than a model lacking within-host details. The analytical model does not perform as well as the simulation model but shows how the within-host basic reproductive number influences evolutionary rates. These findings lend support to the idea that the mutation rate alone is not sufficient to predict the evolutionary rate in viruses, instead calling for improved models that account for viral within-host dynamics.

5.
Infect Genet Evol ; 12(4): 811-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21683165

RESUMO

Homoplasy is the occurrence of genotypes that are identical by state but not by descent. It arises through a number of means including convergent and reverse evolution, and horizontal gene transfer. When using molecular markers that are based on sequences possessing a finite number of character states, such as VNTR or spoligotypes, this is an unavoidable phenomenon. Here we discuss the extent of homoplasy and its impact on inferences drawn from spoligotypes and VNTR in epidemiological studies of tuberculosis. To further explore this problem, we developed a computer simulation model combining the processes of mutation and transmission. Our results show that while the extent of homoplasy is not negligible, its effect on the proportion of isolates clustered ("n-1 method") is likely to be relatively low for spoligotyping. For VNTR-typing, homoplasy occurs at a low rate provided the number of loci used is high and the mutation rate is relatively high. However, deep phylogenetic inferences using spoligotypes or VNTRs with a small number of loci are likely to be unreliable.


Assuntos
DNA Bacteriano/química , Genótipo , Repetições Minissatélites , Mycobacterium tuberculosis/genética , Algoritmos , Simulação por Computador , Evolução Molecular , Humanos , Modelos Genéticos , Modelos Estatísticos , Taxa de Mutação , Mycobacterium tuberculosis/classificação , Tuberculose/epidemiologia , Tuberculose/transmissão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa