Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506909

RESUMO

Pectobacterium spp. are phytopathogenic bacteria whose phylogeny has been continuously revised throughout the years. Previous studies on Pectobacterium's phenotypic diversity often analyzed strains obtained from specific crops or adopted outdated Pectobacterium classification systems. Therefore, a current perspective on trait variations in Pectobacterium species or strains infecting more diverse plant species is limited. This study conducted phylogenetic and phenotypic analyses on strains isolated from 8 eudicot and 4 monocot families in Taiwan. Phylogenetic analysis on 78 strains identified 6 recognized species, namely P. brasiliense, P. aroidearum, P. actinidiae, P. colocasium, P. carotovorum, and P. versatile. Among these, the first two were the most predominant. Patterns suggesting varying host preferences among bacterial species were detected; most P. aroidearum strains were isolated from monocots, whereas P. brasiliense and P. actinidiae tended to exhibit preferences for eudicots. Physiological tests and Biolog analyses conducted on representative strains of each species revealed great within-species phenotypic variation. Despite these strain-level variations, a combination of indole production and phosphatase activity tests was capable of distinguishing all representative strains of P. brasiliense from those of other identified species. Inoculation assays on potato, bok choy, calla lily and onion showed inter- and intra-specific heterogeneities in the tested strains' maceration potentials. Virulence patterns across Pectobacterium species and strains differed depending on the inoculated host. Altogether the findings from this work expand the understanding of Pectobacterium's phenotypic diversity and provide implications for pathogen identification and management.

2.
Plant Dis ; 107(2): 298-305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35787010

RESUMO

Polyscias guilfoylei is a popular ornamental belonging to the Araliaceae family. The present study identified and characterized bacterial strains causing leaf lesions on P. guilfoylei in a nursery in Taiwan. Strains Pgu1 to Pgu5 were isolated from infected leaf tissues and Koch's postulates were fulfilled. Observation of Pgu1 under a transmission electron microscope revealed that its cells were single flagellated and rod shaped. Sequencing of Pgu1 to Pgu5's 16S ribosomal DNA showed that they belong to the genus Xanthomonas. The biochemical and physiological traits of these bacteria were determined, and many of them also resemble those of other xanthomonads. However, the strains were unable to produce yellow pigments typically found in most members of the Xanthomonas genus, even when grown on yeast dextrose calcium carbonate (YDC) agar. Physiological assays and phylogenetic analyses based on multiple loci showed that the isolates were closely associated with members of the species Xanthomonas euvesicatoria and phylogenetically distant from X. hortorum pv. hederae, the currently only known xanthomonad capable of inducing diseases on Polyscias spp. Artificial inoculation into different host plants revealed that a representative strain, Pgu1, is specialized to P. guilfoylei and perhaps other members of the Araliaceae family. Based on the results from the phylogenetic and phenotypic analyses, the present work concludes that these strains belong to a novel pathovar of X. euvesicatoria. The pathovar epithet polysciadis is proposed.


Assuntos
Araliaceae , Xanthomonas , Filogenia , Xanthomonas/fisiologia , Plantas/microbiologia
3.
Plant Dis ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471079

RESUMO

Pothos (Epipremnum aureum) is an Araceae foliage plant with great ornamental values, which has long been enjoyed by consumers (Chen et al. 2010). In September 2021, pothos showing soft rot symptoms were found in 2 nurseries in Taichung, Taiwan. The petioles of the infected plants were macerated; some lesions extended to the leaves (Figure S1). The disease incidence was 50% in one nursery and 37.5% in the other; two and three plants were respectively collected from the two sites. Macerated tissues were homogenized in 10 mM MgCl2 and the samples were observed microscopically without dyeing. Motile, rod-shaped bacteria were observed in the samples, and the bacteria were isolated onto nutrient agar (NA) and grown at 28°C for 2 days. Fast-growing, round, creamy colonies were isolated from all 5 plants. One strain was isolated from each plant and the strains were named Ea1 to Ea5. The bacteria could ferment glucose and induce maceration on potato tuber slices (Schaad et al. 2001), but did not produce indigoidine on NGM medium (Lee and Yu 2006) and were tested negative for phosphatase activity (Schaad et al. 2001). The bacteria's DNA samples were tested using primers specific to Pectobacterium (Y1/Y2; Darrasse et al. 1994). The expected 434-bp amplicon was amplified in all five strains. Multilocus sequence analysis was conducted as previously described (Portier et al. 2019). A concatenated sequence (1,592 bp) comprising partial dnaX (492 bp), leuS (452 bp) and recA (648 bp) sequences was obtained for each strain. Two genotypes were detected among the strains; Ea1 and Ea2 belonged to one genotype (i.e., they had identical sequences), while Ea3, Ea4 and Ea5 belonged to the other (GenBank accession nos. OK416015-OK416020). Phylogenetic analysis was conducted using these data and those of representative strains of known Pectobacterium species (Klair et al. 2022). A maximum-likelihood tree showed that Ea1 to Ea5 clustered with P. aroidearum CFBP8168T (Figure S2). Sequence comparison (Table S1) showed that the similarity between the two genotypes' concatenated sequences was 99.1% (Ea1 vs. Ea3; 1,578/1,592 bp); Ea1 and Ea3 shared 99.2% and 99.3% sequence similarity with P. aroidearum CFBP8168T, respectively. The sequences obtained in this work were searched against GenBank and all of their top hits were those of strains belonging to P. aroidearum (supplementary information). Koch's Postulates were fulfilled by stab inoculating cutting-propagated pothos (8-cm tall) using toothpicks carrying bacteria grown on NA. The pathogen loads used were estimated by suspending cells (attached to individual toothpicks) in 10 mM MgCl2 and spread-plating them onto NA (after dilution); the loads were 5.5 x 106 - 2.2 x 107 CFU. Three plants were inoculated for each strain (3 petioles per plant). Control plants were stabbed with sterile toothpicks. Each plant was then bagged and placed in a growth chamber (28°C; 14 h light). After 24 h, all inoculated plants produced symptoms resembling those found in the nurseries, and the controls did not. For every treatment group, a strain was re-isolated onto NA; each of them shared the same recA sequence with the original strain inoculated. This is first report of P. aroidearum causing pothos soft rot in Taiwan. Local nurseries often grow pothos and other Araceae plants together in humid areas. Since other Araceae species are also known to be susceptible to P. aroidearum (Xu et al. 2020), growers should be cautious of the pathogen's spread across hosts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa