Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944617

RESUMO

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Assuntos
Diester Fosfórico Hidrolases , Açúcares , Humanos , Diester Fosfórico Hidrolases/genética , Carboidratos , Glicoconjugados/química , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo
2.
Nucleic Acids Res ; 44(16): 7511-26, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27317694

RESUMO

The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2'O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.


Assuntos
Capuzes de RNA/metabolismo , Animais , Células Eucarióticas/metabolismo , Humanos , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Capuzes de RNA/química , RNA Viral/metabolismo
3.
Nucleic Acids Res ; 41(21): 9812-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23963701

RESUMO

Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg(2+) ion higher than 500 µM mediates promiscuous activity, Ca(2+) suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca(2+)-mediated cleavage but imparting high cleavage fidelity with Mg(2+). High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca(2+)-mediated cleavage activity by altering the geometry of the Ca(2+)-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes.


Assuntos
Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/química , Cálcio/química , Domínio Catalítico , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Magnésio/química , Simulação de Dinâmica Molecular , Mutação , Especificidade por Substrato
4.
Nucleic Acids Res ; 39(1): 1-18, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20805246

RESUMO

Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4-8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.


Assuntos
Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/química , Endodesoxirribonucleases/química , Desoxirribonucleases de Sítio Específico do Tipo II/classificação , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Engenharia de Proteínas , Endonucleases Específicas para DNA e RNA de Cadeia Simples/química , Especificidade por Substrato
5.
Nucleic Acids Res ; 39(13): 5597-610, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21421560

RESUMO

A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg(++) buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. coli.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Staphylococcus aureus/enzimologia , Trifosfato de Adenosina/metabolismo , Colífagos/fisiologia , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Nucleotídeos de Desoxiadenina/metabolismo , Escherichia coli/genética , Metais/química , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Cloreto de Sódio/química , Especificidade por Substrato
6.
Nucleic Acids Res ; 39(2): 712-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20833632

RESUMO

Restriction enzymes share little or no sequence homology with the exception of isoschizomers, or enzymes that recognize and cleave the same DNA sequence. We present here the structure of a BamHI isoschizomer, OkrAI, bound to the same DNA sequence (TATGGATCCATA) as that cocrystallized with BamHI. We show that OkrAI is a more minimal version of BamHI, lacking not only the N- and C-terminal helices but also an internal 3(10) helix and containing ß-strands that are shorter than those in BamHI. Despite these structural differences, OkrAI recognizes the DNA in a remarkably similar manner to BamHI, including asymmetric contacts via C-terminal 'arms' that appear to 'compete' for the minor groove. However, the arms are shorter than in BamHI. We observe similar DNA-binding affinities between OkrAI and BamHI but OkrAI has higher star activity (at 37°C) compared to BamHI. Together, the OkrAI and BamHI structures offer a rare opportunity to compare two restriction enzymes that work on exactly the same DNA substrate.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Sequência de Aminoácidos , Domínio Catalítico , Desoxirribonuclease BamHI/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Nucleic Acids Res ; 39(18): 8223-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724614

RESUMO

A type IIG restriction endonuclease, RM.BpuSI from Bacillus pumilus, has been characterized and its X-ray crystal structure determined at 2.35Å resolution. The enzyme is comprised of an array of 5-folded domains that couple the enzyme's N-terminal endonuclease domain to its C-terminal target recognition and methylation activities. The REase domain contains a PD-x(15)-ExK motif, is closely superimposable against the FokI endonuclease domain, and coordinates a single metal ion. A helical bundle domain connects the endonuclease and methyltransferase (MTase) domains. The MTase domain is similar to the N6-adenine MTase M.TaqI, while the target recognition domain (TRD or specificity domain) resembles a truncated S subunit of Type I R-M system. A final structural domain, that may form additional DNA contacts, interrupts the TRD. DNA binding and cleavage must involve large movements of the endonuclease and TRD domains, that are probably tightly coordinated and coupled to target site methylation status.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Sequência de Aminoácidos , Bacillus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Clivagem do DNA , Metilases de Modificação do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Alinhamento de Sequência
8.
ACS Pharmacol Transl Sci ; 6(11): 1692-1702, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974627

RESUMO

The N7-methyl guanosine cap structure is an essential 5' end modification of eukaryotic mRNA. It plays a critical role in many aspects of the life cycle of mRNA, including nuclear export, stability, and translation. Equipping synthetic transcripts with a 5' cap is paramount to the development of effective mRNA vaccines and therapeutics. Here, we report a simple and flexible workflow to selectively isolate and analyze structural features of the 5' end of an mRNA by means of DNA probe-directed enrichment with site-specific single-strand endoribonucleases. Specifically, we showed that the RNA cleavage by site-specific RNases can be effectively steered by a complementary DNA probe to recognition sites downstream of the probe-hybridized region, utilizing a flexible range of DNA probe designs. We applied this approach using human RNase 4 to isolate well-defined cleavage products from the 5' end of diverse uridylated and N1-methylpseudouridylated mRNA 5' end transcript sequences. hRNase 4 increases the precision of the RNA cleavage, reducing product heterogeneity while providing comparable estimates of capped products and their intermediaries relative to the widely used RNase H. Collectively, we demonstrated that this workflow ensures well-defined and predictable 5' end cleavage products suitable for analysis and relative quantitation of synthetic mRNA 5' cap structures by UHPLC-MS/MS.

9.
Nucleic Acids Res ; 38(4): 1294-303, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19955230

RESUMO

Type IIS restriction endonuclease BtsCI (GGATG 2/0) is a neoschizomer of FokI (GGATG 9/13) and cleaves closer to the recognition sequence. Although M.BtsCI shows 62% amino acid sequence identity to M.FokI, BtsCI and FokI restriction endonucleases do not share significant amino acid sequence similarity. BtsCI belongs to a group of Type IIS restriction endonucleases, BsmI, Mva1269I and BsrI, that carry two different catalytic sites in a single polypeptide. By inactivating one of the catalytic sites through mutagenesis, we have generated nicking variants of BtsCI that specifically nick the bottom-strand or the top-strand of the target site. By treating target DNA sequentially with the appropriate combinations of FokI and BtsCI nicking variants, we are able to generate long overhangs suitable for fluorescent labeling through end-filling or other techniques based on annealing of complementary DNA sequences.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , DNA/química , DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/química , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Alinhamento de Sequência
10.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060905

RESUMO

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Assuntos
Metilação de DNA/fisiologia , Metiltransferases/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxiadenosinas/metabolismo , Humanos , RNA/química , RNA/metabolismo
11.
bioRxiv ; 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33758845

RESUMO

The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2'-OH of the first transcribed nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2'-O methylation of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the virus evade immune surveillance in the host cell. Here, we report two structures of nsp16/nsp10 representing pre- and post-release states of the RNA product (Cap-1). We observe overall widening of the enzyme upon product formation, and an inward twisting motion in the substrate binding region upon product release. These conformational changes reset the enzyme for the next round of catalysis. The structures also identify a unique binding mode and the importance of a divalent metal ion for 2'-O methylation. We also describe underlying structural basis for the perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV outbreak strain.

12.
Nat Commun ; 12(1): 3287, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078893

RESUMO

The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2'-OH of the first transcribed nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2'-O methylation of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the virus evade immune surveillance in host cells. Here, we report two structures of nsp16/nsp10 representing pre- and post-release states of the RNA product (Cap-1). We observe overall widening of the enzyme upon product formation, and an inward twisting motion in the substrate binding region upon product release. These conformational changes reset the enzyme for the next round of catalysis. The structures also identify a unique binding mode and the importance of a divalent metal ion for 2'-O methylation. We also describe underlying structural basis for the perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV outbreak strain.


Assuntos
Magnésio/química , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Magnésio/metabolismo , Metilação , Metiltransferases , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/química , RNA Viral/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética
13.
Protein Expr Purif ; 69(2): 226-34, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19747545

RESUMO

BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Sequência de Aminoácidos , Bacteriófago T7/genética , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , Quebras de DNA de Cadeia Simples , Enzimas de Restrição do DNA/genética , DNA de Cadeia Simples/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
bioRxiv ; 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32511383

RESUMO

The novel severe acute respiratory syndrome coronoavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused over 2 million infections worldwide in four months. In SARS coronaviruses, the non-structural protein 16 (nsp16) methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of full-length nsp16 and nsp10 of SARS-CoV-2 in the presence of cognate RNA substrate and a methyl donor, S-adenosyl methionine. The nsp16/nsp10 heterodimer was captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We reveal large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This structure provides new mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discovered a distantly located ligand-binding site unique to SARS-CoV-2 that may serve as an alternative target site for antiviral development.

15.
Nat Commun ; 11(1): 3718, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709886

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused millions of infections worldwide. In SARS coronaviruses, the non-structural protein 16 (nsp16), in conjunction with nsp10, methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of SARS-CoV-2 nsp16 and nsp10 in the presence of cognate RNA substrate analogue and methyl donor, S-adenosyl methionine (SAM). The nsp16/nsp10 heterodimer is captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We observe large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This induced fit model provides mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discover a distant (25 Å) ligand-binding site unique to SARS-CoV-2, which can alternatively be targeted, in addition to RNA cap and SAM pockets, for antiviral development.


Assuntos
Metiltransferases/química , Capuzes de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química , Betacoronavirus , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Metiltransferases/metabolismo , Modelos Químicos , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , RNA Viral/metabolismo , S-Adenosilmetionina/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Difração de Raios X
16.
Nucleic Acids Res ; 35(18): 6238-48, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17855396

RESUMO

Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5' half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein-DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions.


Assuntos
Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Estabilidade Enzimática , Cinética , Magnésio/química , Dados de Sequência Molecular , Concentração Osmolar , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
17.
Nucleic Acids Res ; 35(14): 4608-18, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17586812

RESUMO

BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and, in the absence of their small subunits, the large subunits behave as sequence-specific DNA nicking enzymes and only nick the bottom strand of the sequences at these respective positions: GCAATG (-/0) and GCAGTG (-/0). We refer to the single subunit, the bottom-strand nicking forms as 'hemidimers'. Amino acid sequence comparisons reveal that BsrDI and BtsI belong to a family of restriction enzymes that possess two catalytic sites: a canonical PD-X(n)-EXK and a second non-canonical PD-X(n)-E-X12-QR. Interestingly, the other family members, which include BsrI (ACTGG 1/-1) and BsmI/Mva1269I (GAATGC 1/-1) are single polypeptide chains, i.e. monomers, rather than heterodimers. In BsrDI and BtsI, the two catalytic sites are found in two separate subunits. Site-directed mutagenesis confirmed that the canonical catalytic site located at the N-terminus of the large subunit is responsible for the bottom-strand cleavage, whereas the non-canonical catalytic site located in the small subunit is responsible for hydrolysis of the top strand. Top-strand specific nicking variants, Nt.BsrDI and Nt.BtsI, were successfully engineered by combining the catalytic-deficient B subunit with wild-type A subunit.


Assuntos
Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Metilases de Modificação do DNA/genética , Enzimas de Restrição do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Dimerização , Geobacillus stearothermophilus/enzimologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
18.
Sci Rep ; 9(1): 8594, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197197

RESUMO

Eukaryotic mRNAs are modified at their 5' end early during transcription by the addition of N7-methylguanosine (m7G), which forms the "cap" on the first 5' nucleotide. Identification of the 5' nucleotide on mRNA is necessary for determination of the Transcription Start Site (TSS). We explored the effect of various reaction conditions on the activity of the yeast scavenger mRNA decapping enzyme DcpS and examined decapping of 30 chemically distinct cap structures varying the state of methylation, sugar, phosphate linkage, and base composition on 25mer RNA oligonucleotides. Contrary to the generally accepted belief that DcpS enzymes only decap short oligonucleotides, we found that the yeast scavenger decapping enzyme decaps RNA transcripts as long as 1400 nucleotides. Further, we validated the application of yDcpS for enriching capped RNA using a strategy of specifically tagging the 5' end of capped RNA by first decapping and then recapping it with an affinity-tagged guanosine nucleotide.


Assuntos
Endorribonucleases/metabolismo , Capuzes de RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Difosfatos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Conformação de Ácido Nucleico , Concentração Osmolar , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo
19.
J Cell Biochem ; 104(6): 2335-47, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18442051

RESUMO

Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4+ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.


Assuntos
Antivirais/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas Virais de Fusão/química , Internalização do Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Biologia Computacional , HIV-1/metabolismo , Lasers , Luciferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Ácido Nucleico , Espalhamento de Radiação , Termodinâmica
20.
Anal Biochem ; 381(1): 135-41, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18638441

RESUMO

Cytosine modification of the dinucleotide CpG in the DNA regulatory region is an important epigenetic marker during early embryo development, cellular differentiation, and cancer progression. In clinical settings, such as anti-cancer drug treatment, it is desirable to develop research tools to characterize DNA sequences affected by epigenetic perturbations. Here, we describe the construction and characterization of two fusion endonucleases consisting of the (5)mCpG-binding domain of human MeCP2 (hMeCP2) and the cleavage domains of BmrI and FokI restriction endonucleases (REases). The chimeric (CH) endonucleases cleave M.HpaII (C(5)mCGG)-and M.SssI ((5)mCpG)-modified DNA. Unmodified DNA and M.MspI-modified DNA ((5)mCCGG) are poor substrates for the CH-endonucleases. Sequencing cleavage products of modified lambda DNA indicates that cleavage takes place outside the (5)mCpG recognition sequence, predominantly 4-17 bp upstream of the modified base (/N(4-17)(5)mCpG, where / indicates the cleavage site). Such (5)mCpG-specific endonucleases will be useful to study CpG island modification of the regulatory regions of tumor suppressor genes, and for the construction of cell-specific and tumor-specific modified CpG island databases.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA/metabolismo , Endonucleases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Bases , DNA/genética , Endonucleases/química , Endonucleases/isolamento & purificação , Humanos , Dados de Sequência Molecular , Plasmídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Análise de Sequência de DNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa