Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37993417

RESUMO

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Assuntos
Fase G1 , Neoplasias , Fatores de Transcrição , Humanos , Ciclo Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Elementos Facilitadores Genéticos
2.
Nat Commun ; 15(1): 1373, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355560

RESUMO

SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.


Assuntos
Interleucina-6 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Cancer Res ; 83(7): 983-996, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662812

RESUMO

In acute myeloid leukemia (AML), SWI/SNF chromatin remodeling complexes sustain leukemic identity by driving high levels of MYC. Previous studies have implicated the hematopoietic transcription factor PU.1 (SPI1) as an important target of SWI/SNF inhibition, but PU.1 is widely regarded to have pioneer-like activity. As a result, many questions have remained regarding the interplay between PU.1 and SWI/SNF in AML as well as normal hematopoiesis. Here we found that PU.1 binds to most of its targets in a SWI/SNF-independent manner and recruits SWI/SNF to promote accessibility for other AML core regulatory factors, including RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells reduced DNA accessibility and binding of these factors at PU.1 sites and redistributed PU.1 to promoters. Analysis of nontumor hematopoietic cells revealed that similar effects also impair PU.1-dependent B-cell and monocyte populations. Nevertheless, SWI/SNF inhibition induced profound therapeutic response in an immunocompetent AML mouse model as well as in primary human AML samples. In vivo, SWI/SNF inhibition promoted leukemic differentiation and reduced the leukemic stem cell burden in bone marrow but also induced leukopenia. These results reveal a variable therapeutic window for SWI/SNF blockade in AML and highlight important off-tumor effects of such therapies in immunocompetent settings. SIGNIFICANCE: Disruption of PU.1-directed enhancer programs upon SWI/SNF inhibition causes differentiation of AML cells and induces leukopenia of PU.1-dependent B cells and monocytes, revealing the on- and off-tumor effects of SWI/SNF blockade.


Assuntos
Leucemia Mieloide Aguda , Leucopenia , Animais , Camundongos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/patologia , Regiões Promotoras Genéticas , Diferenciação Celular , Leucopenia/genética
4.
iScience ; 25(3): 103917, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35252814

RESUMO

Collective cell migration is associated with cancer metastasis. Cancer fingers are formed when groups of migrating cancer cells follow the leader cells in the front. Epithelial to mesenchymal transition (EMT) is a critical process of cancer metastasis. However, the role of EMT in cancer finger formation remains unclear. In this work, we investigated the EMT-associated mechanical properties and gene expression at single-cell levels in non-small lung cancer fingers. We found that leader cells were more elastic and less sticky than follower cells. Spatial EMT-related gene expression profiling in cancer fingers revealed cellular heterogeneity. Particularly, SNAIL and VIM were found to be two key genes that positively correlated with leader cell phenotypes and controlled cancer finger formation. Silencing either SNAIL or VIM, decreased cancer cell elasticity, cancer finger formation and migration, and increased adhesiveness. These findings indicated that SNAIL and VIM are two driver genes for cancer finger formation.

5.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741710

RESUMO

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Ependimoma/patologia , Camundongos , Neoplasias Supratentoriais/patologia
6.
Bioelectrochemistry ; 124: 80-92, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30015269

RESUMO

The metastatic potential of cancer cells is related to their migratory ability, which is influenced by in vivo microenvironment possessing specific physiochemical factors including electric properties. In the present study, we isolated two different subsets of lung adenocarcinoma H1975 cells, as side population (SP) and main population (MP). SP cells were demonstrated to have cancer stem cell characteristics. Using a microscale device to provide physiological direct-current electric field (dcEF), we investigated the electrotactic responses of the SP and MP cells. The results showed that both SP and MP cells exhibited enhanced cathodal migration ability with actin reorganization and transient intracellular calcium ions ([Ca2+]i) increase under dcEF stimulation. For SP cells, the treatment of either stretch-activated cation channels (SACCs) inhibitor or the blockage of intracellular Ca2+ release could partially inhibited dcEF-activated [Ca2+]i increase, and the concomitant treatment led to a complete inhibition. For MP cells, SACCs activation was entirely responsible for EF-activated increase of [Ca2+]i. All these results suggested that that intracellular Ca2+ activation may be associated with cancer cell tumorigenicity and metastasis.


Assuntos
Adenocarcinoma/patologia , Cálcio/metabolismo , Eletricidade , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Neoplasias Pulmonares/patologia , Actinas/metabolismo , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Eletrodos , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 9(1): 2359, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907766

RESUMO

Most of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer. One potentially ideal source could be human red blood cells (RBCs). Group O-RBCs can be used as universal donors for large-scale EV production since they are readily available in blood banks and they are devoid of DNA. Here, we describe and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs. RNA drug delivery with RBCEVs shows highly robust microRNA inhibition and CRISPR-Cas9 genome editing in both human cells and xenograft mouse models, with no observable cytotoxicity.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos/metabolismo , Vesículas Extracelulares , RNA Guia de Cinetoplastídeos , RNA/análise , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , MicroRNAs/genética , Transplante de Neoplasias , Oligonucleotídeos Antissenso/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa