Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(4): 775-88, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23932120

RESUMO

RNA polymerase II (RNAPII) lies at the core of dynamic control of gene expression. Using 53 RNAPII point mutants, we generated a point mutant epistatic miniarray profile (pE-MAP) comprising ∼60,000 quantitative genetic interactions in Saccharomyces cerevisiae. This analysis enabled functional assignment of RNAPII subdomains and uncovered connections between individual regions and other protein complexes. Using splicing microarrays and mutants that alter elongation rates in vitro, we found an inverse relationship between RNAPII speed and in vivo splicing efficiency. Furthermore, the pE-MAP classified fast and slow mutants that favor upstream and downstream start site selection, respectively. The striking coordination of polymerization rate with transcription initiation and splicing suggests that transcription rate is tuned to regulate multiple gene expression steps. The pE-MAP approach provides a powerful strategy to understand other multifunctional machines at amino acid resolution.


Assuntos
Epistasia Genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alelos , Estudo de Associação Genômica Ampla , Mutação Puntual , RNA Polimerase II/química , Splicing de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Transcriptoma
2.
PLoS Biol ; 21(7): e3002112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37467291

RESUMO

Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.


Assuntos
Barreira Hematoencefálica , Capsídeo , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Capsídeo/metabolismo , Vetores Genéticos , Sistema Nervoso Central/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo
3.
EMBO J ; 39(23): e104523, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073387

RESUMO

Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation-resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ-irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein-intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Envelhecimento/metabolismo , Biologia Computacional , Deinococcus/metabolismo , Escherichia coli , Humanos , Aprendizado de Máquina , Doenças Neurodegenerativas/metabolismo , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de Proteína
4.
Genes Dev ; 26(2): 163-75, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22279048

RESUMO

Genome instability via RNA:DNA hybrid-mediated R loops has been observed in mutants involved in various aspects of transcription and RNA processing. The prevalence of this mechanism among essential chromosome instability (CIN) genes remains unclear. In a secondary screen for increased Rad52 foci in CIN mutants, representing ∼25% of essential genes, we identified seven essential subunits of the mRNA cleavage and polyadenylation (mCP) machinery. Genome-wide analysis of fragile sites by chromatin immunoprecipitation (ChIP) and microarray (ChIP-chip) of phosphorylated H2A in these mutants supported a transcription-dependent mechanism of DNA damage characteristic of R loops. In parallel, we directly detected increased RNA:DNA hybrid formation in mCP mutants and demonstrated that CIN is suppressed by expression of the R-loop-degrading enzyme RNaseH. To investigate the conservation of CIN in mCP mutants, we focused on FIP1L1, the human ortholog of yeast FIP1, a conserved mCP component that is part of an oncogenic fusion in eosinophilic leukemia. We found that truncation fusions of yeast FIP1 analogous to those in cancer cause loss of function and that siRNA knockdown of FIP1L1 in human cells increases DNA damage and chromosome breakage. Our findings illuminate how mCP maintains genome integrity by suppressing R-loop formation and suggest that this function may be relevant to certain human cancers.


Assuntos
Instabilidade Genômica/genética , Mutação , Fatores de Poliadenilação e Clivagem de mRNA/genética , Sítios Frágeis do Cromossomo , Células HCT116 , Humanos , Fases de Leitura Aberta , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Origem de Replicação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
5.
Nucleic Acids Res ; 45(7): e50, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27980064

RESUMO

The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Saccharomyces cerevisiae/genética , Animais , Chlorocebus aethiops , Cromossomos , Cricetinae , Genoma Viral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Mitose/genética , Plasmídeos/genética , Células Vero
6.
Nucleic Acids Res ; 45(11): 6971-6980, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28499033

RESUMO

The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10-25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.


Assuntos
DNA Bacteriano/genética , Engenharia Genética/métodos , Salmonella typhimurium/genética , Códon , Genes Bacterianos , Genes Sintéticos , Genoma Bacteriano , Leucina/genética , Viabilidade Microbiana , Reprodutibilidade dos Testes
7.
Trends Genet ; 30(6): 245-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24794811

RESUMO

The role of normal transcription and RNA processing in maintaining genome integrity is becoming increasingly appreciated in organisms ranging from bacteria to humans. Several mutations in RNA biogenesis factors have been implicated in human cancers, but the mechanisms and potential connections to tumor genome instability are not clear. Here, we discuss how RNA-processing defects could destabilize genomes through mutagenic R-loop structures and by altering expression of genes required for genome stability. A compelling body of evidence now suggests that researchers should be directly testing these mechanisms in models of human cancer.


Assuntos
Instabilidade Genômica , Processamento Pós-Transcricional do RNA , RNA/genética , Animais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Splicing de RNA , Estabilidade de RNA , Transcriptoma
8.
PLoS Genet ; 10(4): e1004288, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743342

RESUMO

DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013.


Assuntos
DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica/genética , Hibridização de Ácido Nucleico/genética , RNA Fúngico/genética , Elementos Antissenso (Genética)/genética , DNA Helicases/genética , DNA Ribossômico/genética , Estudo de Associação Genômica Ampla/métodos , Imunoprecipitação/métodos , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fases de Leitura Aberta/genética , Recombinação Genética/genética , Retroelementos/genética , Ribonuclease H/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Transcrição Gênica/genética
9.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38753766

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Assuntos
Antígenos CD , Encéfalo , Capsídeo , Técnicas de Transferência de Genes , Vetores Genéticos , Glucosilceramidase , Receptores da Transferrina , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus , Células Endoteliais/metabolismo , Técnicas de Introdução de Genes , Terapia Genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Glucosilceramidase/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , Doença de Parkinson/genética , Doença de Parkinson/terapia
10.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187643

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.

11.
Nat Cardiovasc Res ; 1(4): 389-400, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571675

RESUMO

Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.

12.
Nat Commun ; 10(1): 4265, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537797

RESUMO

Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/metabolismo , Instabilidade Genômica/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Estruturas R-Loop/genética , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Humanos , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/genética , Ribonuclease H/genética , Schizosaccharomyces/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa