RESUMO
Salinity stress enhances reactive oxygen species (ROS) accumulation by activating the transcription of NADPH oxidase genes such as RbohD, thus mediating plant developmental processes, including seed germination. However, how salinity triggers the expression of ROS-metabolism-related genes and represses seed germination has not yet been fully addressed. In this study, we show that Abscisic Acid-Insensitive 4 (ABI4), a key component in abscisic acid (ABA) signaling, directly combines with RbohD and Vitamin C Defective 2 (VTC2), the key genes involved in ROS production and scavenging, to modulate ROS metabolism during seed germination under salinity stress. Salinity-induced ABI4 enhances RbohD expression by physically interacting with its promoter, and subsequently promotes ROS accumulation, thus resulting in cell membrane damage and a decrease in seed vigor. Additional genetic evidence indicated that the rbohd mutant largely rescues the salt-hypersensitive phenotype of ABI4 overexpression seeds. Consistently, the abi4/vtc2 double mutant showed the salt-sensitive phenotype, similar to the vtc2 mutant, suggesting that both RbohD and VTC2 are epistatic to ABI4 genetically. Altogether, these results suggest that the salt-induced RbohD transcription and ROS accumulation is dependent on ABI4, and that the ABI4-RbohD/VTC2 regulatory module integrates both ROS metabolism and cell membrane integrity, ultimately repressing seed germination under salinity stress.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Espécies Reativas de Oxigênio , Estresse Salino , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: A detailed study was carried out on Sacha Inchi (Plukenetia volubilis L.) to investigate the mobilization of storage lipids during seed germination. RESULTS: Thin layer chromatography analysis of the total lipids showed a rapid decline in the triacylglycerol (TAG) and diacylglycerol (DAG) contents after the early stages (3-10 days after imbibition (DAI)) followed by a steady breakdown during the later stages (20 and 30 DAI) of germination. Trace amounts of monoacylglycerols (MAG) were identified during the final stage (30 DAI). Further, gas chromatography analysis showed an increase in the major unsaturated fatty acid (linoleic and linolenic) content from 3 to 10 DAI followed by a slow decline. In addition, the major saturated fatty acid (palmitic and oleic) content showed a decrease during the early stages (3-10 DAI) and an increase during the later stages (20 and 30 DAI). CONCLUSION: The present study provides the first report on the metabolization of TAG along with fatty acid changes during the seed germination of Sacha Inchi.
Assuntos
Euphorbiaceae , Germinação/fisiologia , Sementes/crescimento & desenvolvimento , Triglicerídeos/metabolismo , Cromatografia Gasosa , Diglicerídeos/análise , Diglicerídeos/metabolismo , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Triglicerídeos/análiseRESUMO
Energy deprivation triggers various physiological, biochemical and molecular changes in plants under abiotic stress. We investigated the oxidative damages in the high altitude grown conifer Korean fir (Abies koreana) exposed to waterlogging stress. Our experimental results showed that waterlogging stress led to leaf chlorosis, 35 days after treatment. A significant decrease in leaf fresh weight, chlorophyll and sugar content supported this phenotypic change. Biochemical analysis showed a significant increase in leaf proline, lipid peroxidase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical content of waterlogged plants. To elucidate the molecular mechanisms, we conducted RNA-sequencing (RNA-seq) and de novo assembly. Using RNA-seq analysis approach and filtering (P < 0.05 and false discovery rate <0.001), we obtained 134 unigenes upregulated and 574 unigenes downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis placed the obtained differentially expressed unigenes in α-linoleic pathway, fatty acid degradation, glycosis, glycolipid metabolism and oligosaccharide biosynthesis process. Mapping of unigenes with Arabidopsis using basic local alignment search tool for nucleotides showed several critical genes in photosynthesis and carbon metabolism downregulated. Following this, we found the repression of multiple nitrogen (N) assimilation and nucleotide biosynthesis genes including purine metabolism. In addition, waterlogging stress reduced the levels of polyunsaturated fatty acids with a concomitant increase only in myristic acid. Together, our results indicate that the prolonged snowmelt may cause inability of A. koreana seedlings to lead the photosynthesis normally due to the lack of root intercellular oxygen and emphasizes a detrimental effect on the N metabolic pathway, compromising this endangered tree's ability to be fully functional under waterlogging stress.
Assuntos
Ácidos Graxos , Nitrogênio , Nitrogênio/metabolismo , Ácidos Graxos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estresse Fisiológico , Necrose e Clorose das Plantas , Regulação da Expressão Gênica de Plantas , Espécies em Perigo de ExtinçãoRESUMO
Seed germination is a crucial stage in a plant's life cycle, during which the embryo, surrounded by several tissues, undergoes a transition from the quiescent to a highly active state. Endosperm weakening, a key step in this transition, plays an important role in radicle protrusion. Endosperm weakening is initiated upon water uptake, followed by multiple key molecular events occurring within and outside endosperm cells. Although available transcriptomes have provided information about pivotal genes involved in this process, a complete understanding of the signaling pathways are yet to be elucidated. Much remains to be learnt about the diverse intercellular signals, such as reactive oxygen species-mediated redox signals, phytohormone crosstalk, environmental cue-dependent oxidative phosphorylation, peroxisomal-mediated pectin degradation, and storage protein mobilization during endosperm cell wall loosening. This review discusses the evidences from recent researches into the mechanism of endosperm weakening. Further, given that the endosperm has great potential for manipulation by crop breeding and biotechnology, we offer several novel insights, which will be helpful in this research field and in its application to the improvement of crop production.
Assuntos
Endosperma , Germinação , Ácido Abscísico/metabolismo , Endosperma/metabolismo , Melhoramento Vegetal , Sementes/metabolismoRESUMO
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
RESUMO
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Global climate change is strongly associated with variations in precipitation and flooding events. Flooding usually causes submergence- or partial submergence stress in plants, which significantly has a negative influence on agricultural production, from seed germination to vegetative and reproductive growth. Flooding stress results in crop growth under low oxygen conditions and thus, negatively affects the developmental periods of plant lifecycle. The survival strategies of different plant species under this stressful condition are distinct, whereas the perception pathways associated with flooding stress are similar at the molecular level. Plants respond to flooding stress by mediating changes in their architecture, energy metabolism, photosynthesis, respiration and endogenous phytohormone biosynthesis/signaling, because aerobic respiration is inhibited under flooding stress, the decrease of energy metabolism further constrains plant development. Consequently, to acclimate under these unfavorable conditions, the anaerobic respiration cascade must be promoted. In this updated review, we primarily focus on recent advances in our understanding of the mechanisms underlying plant responses to flooding stress. We summarize the functions of the flooding response factors involved in energy metabolism and phytohormone biosynthesis/signaling cascades. Finally, the current understanding of how plants circumvent flooding stress, and the potential challenges for future research, are discussed.
Assuntos
Inundações , Germinação , Fenômenos Fisiológicos Vegetais , Sementes , Estresse Fisiológico , Germinação/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimentoRESUMO
Seed germination is one of the most important stages during plant life cycle, and DOG1 (Delay of germination1) plays a pivotal regulatory role in seed dormancy and germination. In this study, we have identified the DOG1-Like (DOG1L) family in soybean (Glycine max), a staple oil crop worldwide, and investigated their chromosomal distribution, structure and expression patterns. The results showed that the GmDOG1L family is composed of 40 members, which can be divided into six subgroups, according to their evolutionary relationship with other known DOG1-Like genes. These GmDOG1Ls are distributed on 18 of 20 chromosomes in the soybean genome and the number of exons for all the 40 GmDOG1Ls varied greatly. Members of the different subgroups possess a similar motif structure composition. qRT-PCR assay showed that the expression patterns of different GmDOG1Ls were significantly altered in various tissues, and some GmDOG1Ls expressed primarily in soybean seeds. Gibberellic acid (GA) remarkably inhibited the expression of most of GmDOG1Ls, whereas Abscisic acid (ABA) inhibited some of the GmDOG1Ls expression while promoting others. It is speculated that some GmDOG1Ls regulate seed dormancy and germination by directly or indirectly relating to ABA and GA pathways, with complex interaction networks. This study provides an important theoretical basis for further investigation about the regulatory roles of GmDOG1L family on soybean seed germination.
RESUMO
BACKGROUND: The potential biodiesel plant castor bean (Ricinus communis) has been in the limelight for bioenergy research due to the availability of its genome which raises the bar for genome-wide studies claiming advances that impact the "genome-phenome challenge". Here we report the application of phytohormone ABA as an exogenous factor for the improvement of storage reserve accumulation with a focus on the complex interaction of pathways associated with seed filling. RESULTS: After the application of exogenous ABA treatments, we measured an increased ABA levels in the developing seeds cultured in vitro using the ELISA technique and quantified the content of major biomolecules (including total lipids, sugars and protein) in treated seeds. Exogenous ABA (10 µM) enhanced the accumulation of soluble sugar content (6.3%) followed by deposition of total lipid content (4.9 %). To elucidate the possible ABA signal transduction pathways towards overall seed filling, we studied the differential gene expression analysis using Illumina RNA-Sequencing technology, resulting in 2568 (1507-up/1061-down regulated) differentially expressed genes were identified. These genes were involved in sugar metabolism (such as glucose-6-phosphate, fructose 1,6 bis-phosphate, glycerol-3-phosphate, pyruvate kinase), lipid biosynthesis (such as ACS, ACBP, GPAT2, GPAT3, FAD2, FAD3, SAD1 and DGAT1), storage proteins synthesis (such as SGP1, zinc finger protein, RING H2 protein, nodulin 55 and cytochrome P450), and ABA biosynthesis (such as NCED1, NCED3 and beta carotene). Further, we confirmed the validation of RNA-Sequencing data by Semi-quantitative RT-PCR analysis. CONCLUSIONS: Taken together, metabolite measurements supported by genes and pathway expression results indicated in this study provide new insights to understand the ABA signaling mechanism towards seed storage filling and also contribute useful information for facilitating oilseed crop functional genomics on an aim for utilizing castor bean agricultural and bioenergy use.