Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(18): e2201646119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35507892

RESUMO

Multiple membrane organelles require cholesterol for proper function within cells. The Niemann-Pick type C (NPC) proteins export cholesterol from endosomes to other membrane compartments, including the endoplasmic reticulum (ER), plasma membrane (PM), trans-Golgi network (TGN), and mitochondria, to meet their cholesterol requirements. Defects in NPC cause malfunctions in multiple membrane organelles and lead to an incurable neurological disorder. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), a resident enzyme in the ER, converts cholesterol to cholesteryl esters for storage. In mutant NPC cells, cholesterol storage still occurs in an NPC-independent manner. Here we report the interesting finding that in a mutant Npc1 mouse (Npc1nmf), Acat1 gene (Soat1) knockout delayed the onset of weight loss, motor impairment, and Purkinje neuron death. It also improved hepatosplenic pathology and prolonged lifespan by 34%. In mutant NPC1 fibroblasts, ACAT1 blockade (A1B) increased cholesterol content associated with TGN-rich membranes and mitochondria, while decreased cholesterol content associated with late endosomes. A1B also restored proper localization of syntaxin 6 and golgin 97 (key proteins in membrane trafficking at TGN) and improved the levels of cathepsin D (a key protease in lysosome and requires Golgi/endosome transport for maturation) and ABCA1 (a key protein controlling cholesterol release at PM). This work supports the hypothesis that diverting cholesterol from storage can benefit multiple diseases that involve cholesterol deficiencies in cell membranes.


Assuntos
Longevidade , Doença de Niemann-Pick Tipo C , Acetil-CoA C-Acetiltransferase , Doença de Alzheimer , Animais , Colesterol , Ésteres do Colesterol , Modelos Animais de Doenças , Endossomos/genética , Camundongos , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Esterol O-Aciltransferase
2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982602

RESUMO

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.


Assuntos
Doença de Alzheimer , Colesterol , Animais , Camundongos , Doença de Alzheimer/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Esteróis/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Esterol O-Aciltransferase/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982689

RESUMO

Cholesterol is stored as cholesteryl esters by the enzymes acyl-CoA:cholesterol acyltransferases/sterol O:acyltransferases (ACATs/SOATs). ACAT1 blockade (A1B) ameliorates the pro-inflammatory responses of macrophages to lipopolysaccharides (LPS) and cholesterol loading. However, the mediators involved in transmitting the effects of A1B in immune cells is unknown. Microglial Acat1/Soat1 expression is elevated in many neurodegenerative diseases and in acute neuroinflammation. We evaluated LPS-induced neuroinflammation experiments in control vs. myeloid-specific Acat1/Soat1 knockout mice. We also evaluated LPS-induced neuroinflammation in microglial N9 cells with and without pre-treatment with K-604, a selective ACAT1 inhibitor. Biochemical and microscopy assays were used to monitor the fate of Toll-Like Receptor 4 (TLR4), the receptor at the plasma membrane and the endosomal membrane that mediates pro-inflammatory signaling cascades. In the hippocampus and cortex, results revealed that Acat1/Soat1 inactivation in myeloid cell lineage markedly attenuated LPS-induced activation of pro-inflammatory response genes. Studies in microglial N9 cells showed that pre-incubation with K-604 significantly reduced the LPS-induced pro-inflammatory responses. Further studies showed that K-604 decreased the total TLR4 protein content by increasing TLR4 endocytosis, thus enhancing the trafficking of TLR4 to the lysosomes for degradation. We concluded that A1B alters the intracellular fate of TLR4 and suppresses its pro-inflammatory signaling cascade in response to LPS.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Camundongos , Aciltransferases/metabolismo , Colesterol/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/metabolismo
4.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446191

RESUMO

Cholesterol is essential for cellular function and is stored as cholesteryl esters (CEs). CEs biosynthesis is catalyzed by the enzymes acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2), with ACAT1 being the primary isoenzyme in most cells in humans. In Alzheimer's Disease, CEs accumulate in vulnerable brain regions. Therefore, ACATs may be promising targets for treating AD. F12511 is a high-affinity ACAT1 inhibitor that has passed phase 1 safety tests for antiatherosclerosis. Previously, we developed a nanoparticle system to encapsulate a large concentration of F12511 into a stealth liposome (DSPE-PEG2000 with phosphatidylcholine). Here, we injected the nanoparticle encapsulated F12511 (nanoparticle F) intravenously (IV) in wild-type mice and performed an HPLC/MS/MS analysis and ACAT enzyme activity measurement. The results demonstrated that F12511 was present within the mouse brain after a single IV but did not overaccumulate in the brain or other tissues after repeated IVs. A histological examination showed that F12511 did not cause overt neurological or systemic toxicity. We then showed that a 2-week IV delivery of nanoparticle F to aging 3xTg AD mice ameliorated amyloidopathy, reduced hyperphosphorylated tau and nonphosphorylated tau, and reduced neuroinflammation. This work lays the foundation for nanoparticle F to be used as a possible therapy for AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Lipossomos , Distribuição Tecidual , Espectrometria de Massas em Tandem , Acetil-CoA C-Acetiltransferase/metabolismo
5.
J Biol Chem ; 294(43): 15836-15849, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495784

RESUMO

Cholesterol esters are a key ingredient of foamy cells in atherosclerotic lesions; their formation is catalyzed by two enzymes: acyl-CoA:cholesterol acyltransferases (ACATs; also called sterol O-acyltransferases, or SOATs) ACAT1 and ACAT2. ACAT1 is present in all body cells and is the major isoenzyme in macrophages. Whether blocking ACAT1 benefits atherosclerosis has been under debate for more than a decade. Previously, our laboratory developed a myeloid-specific Acat1 knockout (KO) mouse (Acat1-M/-M), devoid of ACAT1 only in macrophages, microglia, and neutrophils. In previous work using the ApoE KO (ApoE-/-) mouse model for early lesions, Acat1-M/-M significantly reduced lesion macrophage content and suppressed atherosclerosis progression. In advanced lesions, cholesterol crystals become a prominent feature. Here we evaluated the effects of Acat1-M/-M in the ApoE KO mouse model for more advanced lesions and found that mice lacking myeloid Acat1 had significantly reduced lesion cholesterol crystal contents. Acat1-M/-M also significantly reduced lesion size and macrophage content without increasing apoptotic cell death. Cell culture studies showed that inhibiting ACAT1 in macrophages caused cells to produce less proinflammatory responses upon cholesterol loading by acetyl low-density lipoprotein. In advanced lesions, Acat1-M/-M reduced but did not eliminate foamy cells. In advanced plaques isolated from ApoE-/- mice, immunostainings showed that both ACAT1 and ACAT2 are present. In cell culture, both enzymes are present in macrophages and smooth muscle cells and contribute to cholesterol ester biosynthesis. Overall, our results support the notion that targeting ACAT1 or targeting both ACAT1 and ACAT2 in macrophages is a novel strategy to treat advanced lesions.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Inflamação/patologia , Macrófagos Peritoneais/enzimologia , Células Mieloides/enzimologia , Esterol O-Aciltransferase/metabolismo , Animais , Apolipoproteínas E , Apoptose , Aterosclerose/patologia , Colesterol/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Inativação Gênica , Hidroxicolesteróis/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Células Mieloides/patologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
6.
Arch Biochem Biophys ; 691: 108518, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32735863

RESUMO

To conduct biochemical studies in vitro, membrane proteins (MPs) must be solubilized with detergents. While detergents are great tools, they can also inhibit the biological activity and/or perturb oligomerization of individual MPs. Nanodisc scaffold peptide (NSPr), an amphipathic peptide analog of ApoA1, was recently shown to reconstitute detergent solubilized MPs into peptidiscs in vitro. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also known as sterol O-acyltransferase 1 (SOAT1), plays a key role in cellular cholesterol storage in various cell types and is a drug target to treat multiple human diseases. ACAT1 contains nine transmembrane domains (TMDs) and primarily forms a homotetramer in vitro and in intact cells; deletion of the N-terminal dimerization domain produces a homodimer with full retention in catalytic activity. ACAT1 is prone to inactivation by numerous detergents. Here we pursued the use of NSPr to overcome the detergent-induced inactivation of ACAT1 by generating near detergent-free ACAT1 peptidiscs. Based on native-PAGE analysis, we showed that NSPr reconstitutes ACAT1 into soluble peptidiscs, in which ACAT1 exists predominantly in oligomeric states greater than a homotetramer. The formation of these higher-order oligomeric states was independent of the N-terminal dimerization domain, suggesting that the oligomerization is mediated through hydrophobic interactions of multiple ACAT1 subunits. ACAT1 peptidiscs were still susceptible to heat-mediated inactivation, presumably due to the residual detergent (CHAPS) bound to ACAT1. We then conditioned ACAT1 with phosphatidylcholine (PC) to replace CHAPS prior to the formation of ACAT1 peptidiscs. The results showed, when PC was included, ACAT1 was present mainly in higher-order oligomeric states with greater enzymatic activity. With PC present, the enzymatic activity of ACAT1 peptidiscs was protected from heat-mediated inactivation. These results support the use of NSPr to create a near detergent-free solution of ACAT1 in peptidiscs for various in vitro studies. Our current results also raise the possibility that, under certain conditions, ACAT1 may form higher-order oligomeric states in vivo.


Assuntos
Peptídeos/química , Esterol O-Aciltransferase/química , Tensoativos/química , Sequência de Aminoácidos , Animais , Células CHO , Ácidos Cólicos/química , Cricetulus , Detergentes/química , Digitonina/química , Humanos , Domínios Proteicos , Multimerização Proteica , Esterol O-Aciltransferase/metabolismo
7.
Arch Biochem Biophys ; 671: 103-110, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31251920

RESUMO

Cholesterol is an important lipid molecule and is needed for all mammalian cells. In various cell types, excess cholesterol is stored as cholesteryl esters; acyl-CoA:cholesterol acyltransferase 1 (ACAT1) plays an essential role in this storage process. ACAT1 is located at the endoplasmic reticulum and has nine transmembrane domains (TMDs). It is a member of the membrane-bound O-acyltransferase (MBOAT) family, in which members contain multiple TMDs and participate in a variety of biological functions. When solubilized in the zwitterionic detergent CHAPS, ACAT1 can be purified to homogeneity with full enzyme activity and behaves as a homotetrameric protein. ACAT1 contains two dimerization motifs. The first motif is located near the N-terminus and is not conserved in MBOATs. Deletion of the N-terminal dimerization domain converts ACAT1 to a dimer with full catalytic activity; therefore, ACAT1 is a two-fold dimer. The second dimerization domain, located near the C-terminus, is conserved in MBOATs; however, it was not known whether the C-terminal dimerization domain is required for enzyme activity. Here we show that treating ACAT1 with non-ionic detergent, Triton X-100 or octyl glucoside, causes the enzyme to become a two-fold monomer without any enzymatic activity. Detergent exchange of Triton X-100 with CHAPS restores ACAT1 to a two-fold dimer but fails to restore its enzymatic activity. These results implicate that ACAT1 requires hydrophobic subunit interactions near the C-terminus in order to remain active as a two-fold dimer. Our results also caution the use of Triton X-100 or octyl glucoside to purify other MBOATs.


Assuntos
Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Detergentes/química , Inibidores Enzimáticos/química , Glucosídeos/química , Octoxinol/química , Multimerização Proteica/efeitos dos fármacos , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Células CHO , Ácidos Cólicos/química , Cricetulus , Cabras , Células HEK293 , Humanos , Camundongos , Coelhos
8.
Am J Physiol Endocrinol Metab ; 315(3): E340-E356, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533741

RESUMO

Macrophages are phagocytes that play important roles in health and diseases. Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) converts cellular cholesterol to cholesteryl esters and is expressed in many cell types. Unlike global Acat1 knockout (KO), myeloid-specific Acat1 KO ( Acat1-) does not cause overt abnormalities in mice. Here, we performed analyses in age- and sex-matched Acat1-M/-M and wild-type mice on chow or Western diet and discovered that Acat1-M/-M mice exhibit resistance to Western diet-induced obesity. On both chow and Western diets, Acat1-M/-M mice display decreased adipocyte size and increased insulin sensitivity. When fed with Western diet, Acat1-M/-M mice contain fewer infiltrating macrophages in white adipose tissue (WAT), with significantly diminished inflammatory phenotype. Without Acat1, the Ly6Chi monocytes express reduced levels of integrin-ß1, which plays a key role in the interaction between monocytes and the inflamed endothelium. Adoptive transfer experiment showed that the appearance of leukocytes from Acat1-M/-M mice to the inflamed WAT of wild-type mice is significantly diminished. Under Western diet, Acat1-M/-M causes suppression of multiple proinflammatory genes in WAT. Cell culture experiments show that in RAW 264.7 macrophages, inhibiting ACAT1 with a small-molecule ACAT1-specific inhibitor reduces inflammatory responses to lipopolysaccharide. We conclude that under Western diet, blocking ACAT1 in macrophages attenuates inflammation in WAT. Other results show that Acat1-M/-M does not compromise antiviral immune response. Our work reveals that blocking ACAT1 suppresses diet-induced obesity in part by slowing down monocyte infiltration to WAT as well as by reducing the inflammatory responses of adipose tissue macrophages.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/fisiologia , Dieta , Inflamação/genética , Inflamação/patologia , Resistência à Insulina/genética , Macrófagos/patologia , Obesidade/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/fisiologia , Adipócitos/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Tamanho Celular , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Inflamação/imunologia , Integrina beta1/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Células RAW 264.7
9.
J Biol Chem ; 291(12): 6232-44, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26801614

RESUMO

Acyl-CoA:cholesterol acyltransferase 1 (Acat1) converts cellular cholesterol to cholesteryl esters and is considered a drug target for treating atherosclerosis. However, in mouse models for atherosclerosis, global Acat1 knockout (Acat1(-/-)) did not prevent lesion development. Acat1(-/-) increased apoptosis within lesions and led to several additional undesirable phenotypes, including hair loss, dry eye, leukocytosis, xanthomatosis, and a reduced life span. To determine the roles of Acat1 in monocytes/macrophages in atherosclerosis, we produced a myeloid-specific Acat1 knockout (Acat1(-M/-M)) mouse and showed that, in the Apoe knockout (Apoe(-/-)) mouse model for atherosclerosis, Acat1(-M/-M) decreased the plaque area and reduced lesion size without causing leukocytosis, dry eye, hair loss, or a reduced life span. Acat1(-M/-M) enhanced xanthomatosis in apoe(-/-) mice, a skin disease that is not associated with diet-induced atherosclerosis in humans. Analyses of atherosclerotic lesions showed that Acat1(-M/-M) reduced macrophage numbers and diminished the cholesterol and cholesteryl ester load without causing detectable apoptotic cell death. Leukocyte migration analysis in vivo showed that Acat1(-M/-M) caused much fewer leukocytes to appear at the activated endothelium. Studies in inflammatory (Ly6C(hi)-positive) monocytes and in cultured macrophages showed that inhibiting ACAT1 by gene knockout or by pharmacological inhibition caused a significant decrease in integrin ß 1 (CD29) expression in activated monocytes/macrophages. The sparse presence of lesion macrophages without Acat1 can therefore, in part, be attributed to decreased interaction between inflammatory monocytes/macrophages lacking Acat1 and the activated endothelium. We conclude that targeting ACAT1 in a myeloid cell lineage suppresses atherosclerosis progression while avoiding many of the undesirable side effects caused by global Acat1 inhibition.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Aterosclerose/imunologia , Macrófagos/imunologia , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Apoptose , Aterosclerose/genética , Aterosclerose/patologia , Linfócitos B/metabolismo , Medula Óssea/patologia , Movimento Celular , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Células-Tronco Hematopoéticas/fisiologia , Leucocitose/genética , Leucocitose/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/enzimologia
10.
J Biol Chem ; 290(39): 23464-77, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26198636

RESUMO

Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Retículo Endoplasmático/metabolismo , Esteróis/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Metabolismo dos Lipídeos , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 48(11): 990-997, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27688150

RESUMO

Acyl-coenzymeA:cholesterol acyltransferase 2 (ACAT2) is abundantly expressed in intestine and fetal liver of healthy human. Our previous studies have shown that in monocytic cells the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the CCAAT/enhancer binding protein (C/EBP) transcription factors. In this study, we further report that the ACAT2 gene expression is attributable to the C/EBPs in the human leukocytes and correlated with the excretion of fluorescent lipoproteins containing the ACAT2-catalyzed NBD22-steryl esters. Moreover, this lipoprotein excretion can be inhibited by the ACAT2 isoform-selective inhibitor pyripyropene A (PPPA) in a dose-dependent manner, and employed to determine the half maximum inhibitory concentration (IC50) values of PPPA. Significantly, it is found that the differentiation-inducing factor all-trans retinoic acid, but not the proinflammatory cytokine tumor necrosis factor-α, enhances this ACAT2-dependent lipoprotein excretion. These data demonstrate that the ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters (CE/SE), and suggest that the excretion of lipoproteins containing the ACAT2-catalyzed CS/SE may avoid cytotoxicity through decreasing the excess intracellular cholesterols/sterols (especially various oxysterols), which is essential for the action of the human leukocytes.


Assuntos
Ésteres do Colesterol/metabolismo , Leucócitos/enzimologia , Lipoproteínas/metabolismo , Esterol O-Aciltransferase/genética , Linhagem Celular , Expressão Gênica , Humanos , Leucócitos/efeitos dos fármacos , Tretinoína/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Esterol O-Aciltransferase 2
13.
Acta Biochim Biophys Sin (Shanghai) ; 48(11): 980-989, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27688151

RESUMO

Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Regulação da Expressão Gênica/fisiologia , Monócitos/metabolismo , Esterol O-Aciltransferase/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Linhagem Celular , Ilhas de CpG , Metilação de DNA , Humanos , Macrófagos/citologia , Regiões Promotoras Genéticas , Ligação Proteica , Esterol O-Aciltransferase 2
14.
J Neurosci ; 34(43): 14484-501, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25339759

RESUMO

Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a resident endoplasmic reticulum enzyme that prevents the buildup of cholesterol in membranes by converting it to cholesterol esters. Blocking ACAT1 pharmacologically or by Acat1 gene knock-out (KO) decreases amyloidopathy in mouse models for Alzheimer's disease. However, the beneficial actions of ACAT1 blockage to treat Alzheimer's disease remained not well understood. Microglia play essential roles in the proteolytic clearance of amyloid ß (Aß) peptides. Here we show that Acat1 gene KO in mouse increases phagocytic uptake of oligomeric Aß1-42 and stimulates lysosomal Aß1-42 degradation in cultured microglia and in vivo. Additional results show that Acat1 gene KO or a specific ACAT1 inhibitor K604 stimulates autophagosome formation and transcription factor EB-mediated lysosomal proteolysis. Surprisingly, the effect of ACAT1 blockage does not alter mTOR signaling or endoplasmic reticulum stress response but can be modulated by agents that disrupt cholesterol biosynthesis. To our knowledge, our current study provides the first example that a small molecule (K604) can promote autophagy in an mTOR-independent manner to activate the coordinated lysosomal expression and regulation network. Autophagy is needed to degrade misfolded proteins/peptides. Our results implicate that blocking ACAT1 may provide a new way to benefit multiple neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Microglia/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteólise , Esterol O-Aciltransferase/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transporte Proteico/fisiologia
15.
Acta Biochim Biophys Sin (Shanghai) ; 47(12): 951-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474739

RESUMO

Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Inflamação , Plasmídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
16.
Hum Mol Genet ; 21(4): 730-50, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22048958

RESUMO

We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.


Assuntos
Proteínas de Transporte/genética , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Mutação Puntual/genética , Idade de Início , Alelos , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Análise Mutacional de DNA , Progressão da Doença , Estresse do Retículo Endoplasmático , Gangliosídeos/metabolismo , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos , Pulmão/citologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/patologia , Bainha de Mielina , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/fisiopatologia , Fenótipo , Deficiências na Proteostase , Células de Purkinje/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Reflexo de Sobressalto , Taxa de Sobrevida
17.
Arterioscler Thromb Vasc Biol ; 33(9): 2081-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846496

RESUMO

OBJECTIVE: To investigate the role of acyl-CoA:cholesterol acyltransferase 1 (ACAT1) in hematopoiesis. APPROACH AND RESULTS: ACAT1 converts cellular cholesterol to cholesteryl esters for storage in multiple cell types and is a potential drug target for human diseases. In mouse models for atherosclerosis, global Acat1 knockout causes increased lesion size; bone marrow transplantation experiments suggest that the increased lesion size might be caused by ACAT1 deficiency in macrophages. However, bone marrow contains hematopoietic stem cells that give rise to cells in myeloid and lymphoid lineages; these cell types affect atherosclerosis at various stages. Here, we test the hypothesis that global Acat1(-/-) may affect hematopoiesis, rather than affecting macrophage function only, and show that Acat1(-/-) mice contain significantly higher numbers of myeloid cells and other cells than wild-type mice. Detailed analysis of bone marrow cells demonstrated that Acat1(-/-) causes a higher proportion of the stem cell-enriched Lin(-)Sca-1(+)c-Kit(+) population to proliferate, resulting in higher numbers of myeloid progenitor cells. In addition, we show that Acat1(-/-) causes higher monocytosis in Apoe(-/-) mouse during atherosclerosis development. CONCLUSIONS: ACAT1 plays important roles in hematopoiesis in normal mouse and in Apoe(-/-) mouse during atherosclerosis development.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Aterosclerose/enzimologia , Células da Medula Óssea/enzimologia , Proliferação de Células , Hematopoese , Células-Tronco Hematopoéticas/enzimologia , Leucocitose/enzimologia , Acetil-CoA C-Acetiltransferase/genética , Animais , Antígenos Ly/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Biomarcadores/metabolismo , Linhagem da Célula , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Genótipo , Leucocitose/genética , Leucocitose/imunologia , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Precursoras de Linfócitos B/enzimologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fatores de Tempo
18.
J Biol Chem ; 287(21): 17483-17492, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474282

RESUMO

Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-ß-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Pregnenolona/metabolismo , Esterol O-Aciltransferase/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Glândulas Suprarrenais/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol/genética , Colesterol/metabolismo , Humanos , Camundongos , Camundongos Knockout , Especificidade de Órgãos/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Pregnenolona/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
19.
Acta Biochim Biophys Sin (Shanghai) ; 45(11): 953-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24028971

RESUMO

MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by targeting mRNAs and control a wide range of biological functions. Recent studies have indicated that miRNAs can regulate lipid and cholesterol metabolism in mammals. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is a key enzyme in cellular cholesterol metabolism. The accumulated cholesteryl esters are mainly synthesized by ACAT1 during the formation of foam cell, a hallmark of early atherosclerotic lesions. Here, we revealed that miR-9 could target the 3'-untranslated region of human ACAT1 mRNA, specifically reduce human ACAT1 or reporter firefly luciferase (Fluc) proteins but not their mRNAs in different human cell lines, and functionally decrease the formation of foam cells from THP-1-derived macrophages. Our findings suggest that miR-9 might be an important regulator in cellular cholesterol homeostasis and decrease the formation of foam cells in vivo by reducing ACAT1 proteins.


Assuntos
Células Espumosas/metabolismo , Macrófagos/metabolismo , MicroRNAs/fisiologia , Esterol O-Aciltransferase/metabolismo , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Humanos , Macrófagos/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esterol O-Aciltransferase/genética
20.
Proc Natl Acad Sci U S A ; 107(7): 3081-6, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133765

RESUMO

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-beta, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1-) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1- causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1- causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1- causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.


Assuntos
Acetil-CoA C-Acetiltransferase/deficiência , Doença de Alzheimer/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Hidroxicolesteróis/metabolismo , Modelos Biológicos , Acetil-CoA C-Acetiltransferase/genética , Acil Coenzima A/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Colesterol/metabolismo , Inativação Gênica , Humanos , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa