Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Appl Clin Med Phys ; 24(12): e14140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37708092

RESUMO

PURPOSE: To calculate the dose distribution using Monte Carlo simulations for a novel high-dose-rate Yttrium-90 (Y-90) disc source recently developed for episcleral brachytherapy and provide a lookup table for treatment planning. METHODS: Monte Carlo simulations were performed to calculate the in-water dose distribution of the Y-90 disc source using the "GATE", a software based on the "Geant4" Monte Carlo simulation toolkit developed by the international OpenGATE collaboration. The geometry of this novel beta source, its capsule, and the surrounding water medium were accurately modeled in the simulation input files. The standard Y-90 element beta spectrum from ICRU 72 was used, and the physics processes for beta and photon interactions with matters were all included. The dose distribution of this Y-90 disc source was measured in a separate study using Gafchromic EBT-3 films and the results were reported elsewhere. To match the setup of the experiment, a Gafchromic EBT-3 film was also included in the simulation geometry. The simulated dose profiles were exported from the 3D dose distribution results and compared with the measured dose profiles. Transverse dose profiles at different distances from the seed surface were also obtained to study the lateral coverage of the source. RESULTS: The measured percent depth dose (PDD) curves along the central axis perpendicular to the surface of the Y-90 disc were constructed from the experimental and simulated data, and normalized to the reference point at 1 mm from the source capsule. Both PDD curves agreed well up to 4 mm from the source surface (maximum difference ± 10%) but deviated from each other beyond 4 mm. The deviation might be caused by the increased measurement uncertainty in the low-dose region. The dose rate at the reference point calculated from the Monte Carlo simulation was 1.09 cGy/mCi-s and agreed very well with the measured dose rate of 1.05 cGy/mCi-s. If the 80% isodose line is selected as the lateral coverage, the lateral dose coverage is maximal (∼4.5 mm) at the plane next to the source surface, and gradually decreases with the increasing distance, approaching 3.5 mm when the plane is 5 mm from the 6-mm diameter source surface. CONCLUSION: Monte Carlo simulations were successfully performed to confirm the measured PDD curve of the novel Y-90 disc source. This simulation work laid a solid foundation for characterizing the full dosimetry parameters of this source for episcleral brachytherapy applications.


Assuntos
Braquiterapia , Humanos , Braquiterapia/métodos , Radioisótopos de Ítrio/uso terapêutico , Método de Monte Carlo , Radiometria/métodos , Água , Dosagem Radioterapêutica
2.
J Appl Clin Med Phys ; 23(5): e13571, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35226398

RESUMO

PURPOSE: To evaluate the dosimetric accuracy of EBT3 film calibrated with a 6 MV beam for high dose rate brachytherapy and propose a novel method for direct film calibration with an Ir-192 source. METHODS: The 6 MV calibration was performed in water on a linear accelerator (linac). The Ir-192 calibration was accomplished by irradiating the film wrapped around a cylinder applicator with an Ir-192 source. All films were scanned 1-day post-irradiation to acquire calibration curves for all three (red, blue, and green) channels. The Ir-192 calibration films were also used for single-dose comparison. Moreover, an independent test film under a H.A.M. applicator was irradiated and the 2D dose distribution was obtained separately for each calibration using the red channel data. Gamma analysis and point-by-point profile comparison were performed to evaluate the performance of both calibrations. The uncertainty budget for each calibration system was analyzed. RESULTS: The red channel had the best performance for both calibration systems in the single-dose comparison. We found a significant 4.89% difference from the reference for doses <250 cGy using the 6 MV calibration, while the difference was only 0.87% for doses >600 cGy. Gamma analysis of the 2D dose distribution showed the Ir-192 calibration had a higher passing rate of 91.9% for the 1 mm/2% criterion, compared to 83.5% for the 6 MV calibration. Most failing points were in the low-dose region (<200 cGy). The point-by-point profile comparison reported a discrepancy of 2%-3.6% between the Ir-192 and 6 MV calibrations in this low-dose region. The linac- and Ir-192-based dosimetry systems had an uncertainty of 4.1% (k = 2) and 5.66% (k = 2), respectively. CONCLUSIONS: Direct calibration of EBT3 films with an Ir-192 source is feasible and reliable, while the dosimetric accuracy of 6 MV calibration depends on the dose range. The Ir-192 calibration should be used when the measurement dose range is below 250 cGy.


Assuntos
Braquiterapia , Dosimetria Fotográfica , Calibragem , Dosimetria Fotográfica/métodos , Humanos , Radioisótopos de Irídio/uso terapêutico
3.
J Appl Clin Med Phys ; 23(6): e13640, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35536772

RESUMO

Plan checks are important components of a robust quality assurance (QA) program. Recently, the American Association of Physicists in Medicine (AAPM) published two reports concerning plan and chart checking, Task Group (TG) 275 and Medical Physics Practice Guideline (MPPG) 11.A. The purpose of the current study was to crosswalk initial plan check failure modes revealed in TG 275 against our institutional QA program and local incident reporting data. Ten physicists reviewed 46 high-risk failure modes reported in Table S1.A.i of the TG 275 report. The committee identified steps in our planning process which sufficiently checked each failure mode. Failure modes that were not covered were noted for follow-up. A multidisciplinary committee reviewed the narratives of 1599 locally-reported incidents in our Radiation Oncology Incident Learning System (ROILS) database and categorized each into the high-risk TG 275 failure modes. We found that over half of the 46 high-risk failure modes, six of which were top-ten failure modes, were covered in part by daily contouring peer-review rounds, upstream of the traditional initial plan check. Five failure modes were not adequately covered, three of which concerned pregnancy, pacemakers, and prior dose. Of the 1599 incidents analyzed, 710 were germane to the initial plan check, 23.4% of which concerned missing pregnancy attestations. Most, however, were caught prior to CT simulation (98.8%). Physics review and initial plan check were the least efficacious checks, with error detection rates of 31.8% and 31.3%, respectively, for some failure modes. Our QA process that includes daily contouring rounds resulted in increased upstream error detection. This work has led to several initiatives in the department, including increased automation and enhancement of several policies and procedures. With TG 275 and MPPG 11.A as a guide, we strongly recommend that departments consider an internal chart checking policy and procedure review.


Assuntos
Radioterapia (Especialidade) , Planejamento da Radioterapia Assistida por Computador , Automação , Humanos , Física , Planejamento da Radioterapia Assistida por Computador/métodos , Gestão de Riscos/métodos
4.
J Appl Clin Med Phys ; 21(9): 71-81, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627294

RESUMO

To evaluate the clinical feasibility and dosimetric benefits of a novel gantry-static couch-motion (GsCM) technique for external beam photon boost treatment of lumpectomy cavity in patients with early-stage breast cancer in comparison to three-dimensional conformal radiotherapy (3D-CRT), wedge pair in supine position (WPS), and wedge pair in decubitus position (WPD) techniques. A retrospective review was conducted on breast patients (right breast, n = 10 and left breast, n = 10) who received 10 Gy boost after 50 Gy to whole breast. The treatment plans were generated using an isocentric-based GsCM technique (a VMAT type planning approach) integrating couch rotational motion at static gantry positions. Static fields for each tangential side were merged using a Matlab® script and delivered automatically within the Varian TruebeamTM STx in Developer Mode application as a VMAT arc (wide-angular medial and short-angular lateral arcs). The dosimetric accuracy of the plan delivery was evaluated by ion chamber array measurements in phantom. For both right and left breast boost GsCM, 3D-CRT, WPS, and WPD all provided an adequate coverage to PTV. GsCM significantly reduced the ipsilateral lung V30% for right side (mean, 80%) and left side (mean, 70%). Heart V5% reduced by 90% (mean) for right and 80% (mean) for left side. Ipsilateral breast V50% and mean dose were comparable for all techniques but for GsCM, V100% reduced by 50% (mean) for right and left side. The automated delivery of both arcs was under 2 min as compared to delivering individual fields (30 ± 5 min). The gamma analysis using 2 mm distance to agreement (DTA) and 2% dose difference (DD) was 98 ± 1.5% for all 20 plans. The GsCM technique facilitates coronal plane dose delivery appropriate for deep-seated breast boost cavities, with sufficient dose conformity of target volume paired with sparing of the OARs.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Mama , Neoplasias da Mama/radioterapia , Feminino , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
5.
J Appl Clin Med Phys ; 21(10): 80-88, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892452

RESUMO

The objective of this work was to identify the exact location of the effective point of measurement (EPM) of four different active detectors to compare the relative collimator output factors (ROF) of Leksell Gamma Knife (LGK) according to IAEA TRS-483 recommendations. ROF was measured at the center of the spherical LGK-Solid Water (LGK-SW) Phantom for three (4-, 8-, and 16-mm in diameter) collimators using four (PTW-TN60008, PTW-TN60016, PTW-TN60017, and PTW-60019 diode/diamond) detectors. Since diode detectors have a much smaller sensitive volume than the PTW-31010 ion chamber used for reference dosimetry, its EPM might not be at the center of the phantom, or (100, 100, 100) of the Leksell Coordinate System, particularly in the z-direction. Hence for each diode detector, a CBCT image was acquired after it was inserted into the phantom, from which the z-Leksell coordinate of EPM was determined. Relative collimator output factors was then measured by focusing GK beams on the determined EPM of each diode. Measured ROFs were compared with the vendor-provided values in GK treatment planning system. For validation, a plan was generated to measure the output of 4-mm collimator for PTW-TN60017 at various couch locations along the z-axis. For PTW-TN60008, the percentage variations were 0.6 ± 0.4%, and -0.8 ± 0.2% for 4 and 8-mm collimators, respectively. For PTW-TN60016, the percentage variations were 0.8 ± 0.0%, and 0.2 ± 0.1%, respectively. The percentage variations were -3.3 ± 0.0% and -0.9 ± 0.1%, respectively, for PTW-TN60017, and -0.5 ± 0.0% and -0.8 ± 0.2%, respectively, for PTW-TN60019. Center of the measured profile for PTW-TN60017 was only 0.1 mm different from that identified using the CBCT. In conclusion, we have developed a simple and effective method to determine the EPMs of diode detectors when inserted into the existing LGK-SW phantom. With the acquired positional information and using TRS-483 protocol, good agreements were obtained between the measured ROFs and manufacturer recommended values.


Assuntos
Radiocirurgia , Diamante , Humanos , Imagens de Fantasmas , Radiometria , Água
6.
J Neurooncol ; 143(1): 167-174, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30945049

RESUMO

INTRODUCTION: To assess tumor control and survival in patients treated with stereotactic radiosurgery (SRS) for 10 or more metastatic brain tumors. METHODS: Patients were retrospectively identified. Clinical records were reviewed for follow-up data, and post-treatment MRI studies were used to assess tumor control. For tumor control studies, patients were separated based on synchronous or metachronous treatment, and control was assessed at 3-month intervals. The Kaplan-Meier method was employed to create survival curves, and regression analyses were employed to study the effects of several variables. RESULTS: Fifty-five patients were treated for an average of 17 total metastases. Forty patients received synchronous treatment, while 15 received metachronous treatment. Univariate analysis revealed an association between larger brain volumes irradiated with 12 Gy and decreased overall survival (p = 0.0406); however, significance was lost on multivariate analysis. Among patients who received synchronous treatment, the median percentage of tumors controlled was 100%, 91%, and 82% at 3, 6, and 9 months, respectively. Among patients who received metachronous treatment, the median percentage of tumors controlled after each SRS encounter was 100% at all three time points. CONCLUSIONS: SRS can be used to treat patients with 10 or more total brain metastases with an expectation of tumor control and overall survival that is equivalent to that reported for patients with four or fewer tumors. Development of new metastases leading to repeat SRS is not associated with worsened tumor control or survival. Survival may be adversely affected in patients having a higher volume of normal brain irradiated.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Radiocirurgia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/mortalidade , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
7.
J Appl Clin Med Phys ; 15(6): 4591, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25493504

RESUMO

An iterative method is proposed to calibrate radiation sensitivities of an arbitrary two-dimensional (2D) array of detectors. The array is irradiated with a wide open- field beam at the central position, as well as at laterally and longitudinal shifted positions; the 2D beam profile of the wide field is reconstructed iteratively from the ratios of shifted images to the central image. The propagation errors due to output variation and inaccurate array positioning are estimated and removed from the reconstructed beam profile by an error-locking scheme with narrow open-field irradiations. The beam profile is interpolated when necessary and then compared to raw detector responses to determine sensitivities. Two additional methods were implemented for comparison: 1) the commercial iterative calibration method for MapCHECK2 with translation and rotation operations; 2) a labor-intensive noniterative method without the issue of error propagation. A MapCHECK2 2D detector array was used to validate the proposed method with the 6 MV photon beam from a Varian iX linear accelerator. All calibration methods were repeated three times. A total of 5, 9, and 29 irradiations were required to implement the commercial method, the proposed method and the noniterative method respec- tively. Moreover, a 5 mm positioning error was intentionally introduced into the calibration procedures of the commercial and the proposed method to test their robustness. Under the normal operation condition of the linear accelerator and with careful alignment of the MapCHECK2, the deviations of the calibrated sensitivities of the proposed method and commercial method with respect to the noniterative method were 0.30% ± 0.29% and 0.92% ± 0.63% respectively; when the 5 mm positioning error was presented, these two methods resulted in deviations of 0.40% ± 0.36% and 3.58% ± 1.94%, respectively. A patient study suggested that, due to this 5 mm positioning error, the mean DTA (dose to agreement) passing rate by the commercial method was 2.7% lower than that by the noniterative method, whereas the proposed method led to a comparable passing rate. It is evident from this study that the proposed iterative method leads to within 1% mean calibration results to established methods. It requires much fewer number of measurements than noniterative method and is more robust against the positioning error than the commercial iterative method. The method also eliminates the need of rotation operations and, therefore, is applicable to inline detector arrays without rotation function, such as electronic portal imager device (EPID). 


Assuntos
Terapia com Prótons/instrumentação , Dosagem Radioterapêutica , Calibragem , Radiometria/instrumentação , Radiometria/normas
8.
Cancers (Basel) ; 16(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398188

RESUMO

Bragg peak FLASH radiotherapy (RT) uses a distal tracking method to eliminate exit doses and can achieve superior OAR sparing. This study explores the application of this novel method in stereotactic body radiotherapy prostate FLASH-RT. An in-house platform was developed to enable intensity-modulated proton therapy (IMPT) planning using a single-energy Bragg peak distal tracking method. The patients involved in the study were previously treated with proton stereotactic body radiotherapy (SBRT) using the pencil beam scanning (PBS) technique to 40 Gy in five fractions. FLASH plans were optimized using a four-beam arrangement to generate a dose distribution similar to the conventional opposing beams. All of the beams had a small angle of two degrees from the lateral direction to increase the dosimetry quality. Dose metrics were compared between the conventional PBS and the Bragg peak FLASH plans. The dose rate histogram (DRVH) and FLASH metrics of 40 Gy/s coverage (V40Gy/s) were investigated for the Bragg peak plans. There was no significant difference between the clinical and Bragg peak plans in rectum, bladder, femur heads, large bowel, and penile bulb dose metrics, except for Dmax. For the CTV, the FLASH plans resulted in a higher Dmax than the clinical plans (116.9% vs. 103.3%). For the rectum, the V40Gy/s reached 94% and 93% for 1 Gy dose thresholds in composite and single-field evaluations, respectively. Additionally, the FLASH ratio reached close to 100% after the application of the 5 Gy threshold in composite dose rate assessment. In conclusion, the Bragg peak distal tracking method can yield comparable plan quality in most OARs while preserving sufficient FLASH dose rate coverage, demonstrating that the ultra-high dose technique can be applied in prostate FLASH SBRT.

9.
Med Dosim ; 48(1): 31-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36503990

RESUMO

The purpose of this study was to directly compare the plan quality of Gamma Knife (GK) (Elekta, Stockholm, Sweden)- vs linear accelerator (LINAC)-based delivery techniques for fractionated stereotactic radiotherapy (fSRT) of large brain metastases. Eighteen patients with clinical target volumes (CTVs) larger than 9.5 cc were selected to generate comparative plans for the prescription dose of 9 Gy × 3 fractions, utilizing the Eclipse (Varian, Palo Alto, US) vs Leksell GammaPlan (LGP) (Elekta, Stockholm, Sweden) treatment planning systems (TPS). Each GK plan was first developed using LGP's automatic planning, followed by manual adjustments/refinements. The same MRI and structures, including CTVs and organs at risk, were then DICOM-transferred to the Eclipse TPS. Volumetric Modulated Arc Therapy (VMAT) and Dynamic Conformal Arc (DCA) plans for a Truebeam, with high-definition multi-leaf collimators (MLCs), were developed on these MR images and structures using a single isocenter and 3 non-coplanar arcs. No planning target volume (PTV) margins were added, and no heterogeneity correction was used for either TPS. GK plans were prescribed to the 50% isodose line, and Eclipse VMAT and DCA plans allowed a maximum dose up to 170% and ∼125%, respectively. Gradient index (GI), Paddick Conformity Index (PCI), V20GyRind, and V4GyRind of all 3 techniques were calculated and compared. One-way analysis of variance (ANOVA) was performed to determine the statistical significance of the differences of these planning indices for the 3 planning techniques. A total of eighteen treatment targets were analyzed. Median CTV volume was 14.4 cc (range 9.5 cc - 55.9 cc). Mean ± standard deviation of PCI were 0.85 ± 0.03, 0.90 ± 0.03, and 0.72 ± 0.11 for GK, VMAT and DCA plans, respectively. They were respectively 2.64 ± 0.17, 2.46 ± 0.18, and 2.83 ± 0.48 for GI; 15.33 ± 8.45 cc, 10.47 ± 4.32 cc and 23.51 ± 16 cc for V20GyRind; and 316.28 ± 138.35 cc, 317.81 ± 108.21 cc, and 394.85 ± 142.16 cc for V4GyRind. The differences were statistically significant with p < 0.01 for all indices, except for V4GyRind (p > 0.129). In conclusion, a direct dosimetric comparison using the same MRI scan and contours was performed to evaluate the plan quality of various fSRT delivery techniques for CTV > 9.5 cc. LINAC VMAT plans provided the best dosimetric outcome in regard to PCI, GI, and V20GyRind. GK outcomes were similar to LINAC VMAT plans while LINAC DCA outcomes were significantly worse. Even though GK has a smaller physical penumbra, LINAC VMAT outperformed GK in this study due to enhanced penumbra sharpening and better beam optimization.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Aceleradores de Partículas , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Radioterapia de Intensidade Modulada/métodos
10.
World Neurosurg ; 172: e120-e129, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587898

RESUMO

OBJECTIVE: Management of large vestibular schwannoma (VS) is controversial. Surgery has historically been the treatment of choice, but emerging literature suggests that definitive stereotactic radiosurgery is feasible. We report our institutional experience of control and morbidity outcomes treating Koos grade 3-4 VS with Gamma Knife radiosurgery (GKRS). METHODS: An institutional review board-approved database compiled outcomes of Koos grade 3-4 VS treated by GKRS from March 2014 to January 2021 with >6 months' follow-up. Baseline symptoms per Common Terminology Criteria for Adverse Events definitions were recorded. Control rates, toxicities, and post-treatment volumetric changes were analyzed. Aggregate impairment scores (AIs) were defined by the sum of relevant Common Terminology Criteria for Adverse Events grades to categorize symptomatic burdens. Baseline and post-treatment AIs were tested for association with definitive versus adjuvant strategies. RESULTS: In total, 34 patients with Koos grade 3-4 VS were identified, 19 treated with definitive GKRS (GKRS-D) and 15 with adjuvant GKRS (GKRS-A). Median follow-up was 34.2 months for GKRS-D and 48.8 months for GKRS-A. Patients who received GKRS-A had greater AIs at presentation (3.73 vs. 2.11, P = 0.017). Irrespective of treatment approach, tumor control rates were 100% without instances of brainstem necrosis or shunt placement. Six of 19 patients who received GKRS-D had improved post-treatment AI, and 63% of patients who received GKRS-D and 66% of patients who received GKRS-A had tumor shrinkage >20%. CONCLUSIONS: In well-selected patients with Koos grade 3-4 VS, definitive stereotactic radiosurgery may be an appropriate strategy with excellent control and minimal toxicity. Our data suggest that the need for surgical decompression should be considered based on pretreatment symptom burden rather than tumor size.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Radiocirurgia/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos , Instalações de Saúde , Seguimentos
11.
Cancers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760528

RESUMO

Bragg peak FLASH-RT can deliver highly conformal treatment and potentially offer improved normal tissue protection for radiotherapy patients. This study focused on developing ultra-high dose rate (≥40 Gy × RBE/s) intensity-modulated proton therapy (IMPT) for hypofractionated treatment of early-stage breast cancer. A novel tracking technique was developed to enable pencil beaming scanning (PBS) of single-energy protons to adapt the Bragg peak (BP) to the target distally. Standard-of-care PBS treatment plans of consecutively treated early-stage breast cancer patients using multiple energy layers were reoptimized using this technique, and dose metrics were compared between single-energy layer BP FLASH and conventional IMPT plans. FLASH dose rate coverage by volume (V40Gy/s) was also evaluated for the FLASH sparing effect. Distal tracking can precisely stop BP at the target distal edge. All plans (n = 10) achieved conformal IMPT-like dose distributions under clinical machine parameters. No statistically significant differences were observed in any dose metrics for heart, ipsilateral lung, most ipsilateral breast, and CTV metrics (p > 0.05 for all). Conventional plans yielded slightly superior target and skin dose uniformities with 4.5% and 12.9% lower dose maxes, respectively. FLASH-RT plans reached 46.7% and 61.9% average-dose rate FLASH coverage for tissues receiving more than 1 and 5 Gy plan dose total under the 250 minimum MU condition. Bragg peak FLASH-RT techniques achieved comparable plan quality to conventional IMPT while reaching adequate dose rate ratios, demonstrating the feasibility of early-stage breast cancer clinical applications.

12.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38001746

RESUMO

This study quantifies setup uncertainty in brain tumor patients who received image-guided proton therapy. Patients analyzed include 165 children, adolescents, and young adults (median age at radiotherapy: 9 years (range: 10 months to 24 years); 80 anesthetized and 85 awake) enrolled in a single-institution prospective study from 2020 to 2023. Cone-beam computed tomography (CBCT) was performed daily to calculate and correct manual setup errors, once per course after setup correction to measure residual errors, and weekly after treatments to assess intrafractional motion. Orthogonal radiographs were acquired consecutively with CBCT for paired comparisons of 40 patients. Translational and rotational errors were converted from 6 degrees of freedom to a scalar by a statistical approach that considers the distance from the target to the isocenter. The 95th percentile of setup uncertainty was reduced by daily CBCT from 10 mm (manual positioning) to 1-1.5 mm (after correction) and increased to 2 mm by the end of fractional treatment. A larger variation existed between the roll corrections reported by radiographs vs. CBCT than for pitch and yaw, while there was no statistically significant difference in translational variation. A quantile mixed regression model showed that the 95th percentile of intrafractional motion was 0.40 mm lower for anesthetized patients (p=0.0016). Considering additional uncertainty in radiation-imaging isocentricity, the commonly used total plan robustness of 3 mm against positional uncertainty would be appropriate for our study cohort.

13.
Med Phys ; 39(11): 6745-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23127068

RESUMO

PURPOSE: Simulated projection images of digital phantoms constructed from CT scans have been widely used for clinical and research applications but their quality and computation speed are not optimal for real-time comparison with the radiography acquired with an x-ray source of different energies. In this paper, the authors performed polyenergetic forward projections using open computing language (OpenCL) in a parallel computing ecosystem consisting of CPU and general purpose graphics processing unit (GPGPU) for fast and realistic image formation. METHODS: The proposed polyenergetic forward projection uses a lookup table containing the NIST published mass attenuation coefficients (µ∕ρ) for different tissue types and photon energies ranging from 1 keV to 20 MeV. The CT images of interested sites are first segmented into different tissue types based on the CT numbers and converted to a three-dimensional attenuation phantom by linking each voxel to the corresponding tissue type in the lookup table. The x-ray source can be a radioisotope or an x-ray generator with a known spectrum described as weight w(n) for energy bin E(n). The Siddon method is used to compute the x-ray transmission line integral for E(n) and the x-ray fluence is the weighted sum of the exponential of line integral for all energy bins with added Poisson noise. To validate this method, a digital head and neck phantom constructed from the CT scan of a Rando head phantom was segmented into three (air, gray∕white matter, and bone) regions for calculating the polyenergetic projection images for the Mohan 4 MV energy spectrum. To accelerate the calculation, the authors partitioned the workloads using the task parallelism and data parallelism and scheduled them in a parallel computing ecosystem consisting of CPU and GPGPU (NVIDIA Tesla C2050) using OpenCL only. The authors explored the task overlapping strategy and the sequential method for generating the first and subsequent DRRs. A dispatcher was designed to drive the high-degree parallelism of the task overlapping strategy. Numerical experiments were conducted to compare the performance of the OpenCL∕GPGPU-based implementation with the CPU-based implementation. RESULTS: The projection images were similar to typical portal images obtained with a 4 or 6 MV x-ray source. For a phantom size of 512 × 512 × 223, the time for calculating the line integrals for a 512 × 512 image panel was 16.2 ms on GPGPU for one energy bin in comparison to 8.83 s on CPU. The total computation time for generating one polyenergetic projection image of 512 × 512 was 0.3 s (141 s for CPU). The relative difference between the projection images obtained with the CPU-based and OpenCL∕GPGPU-based implementations was on the order of 10(-6) and was virtually indistinguishable. The task overlapping strategy was 5.84 and 1.16 times faster than the sequential method for the first and the subsequent digitally reconstruction radiographies, respectively. CONCLUSIONS: The authors have successfully built digital phantoms using anatomic CT images and NIST µ∕ρ tables for simulating realistic polyenergetic projection images and optimized the processing speed with parallel computing using GPGPU∕OpenCL-based implementation. The computation time was fast (0.3 s per projection image) enough for real-time IGRT (image-guided radiotherapy) applications.


Assuntos
Gráficos por Computador , Computadores , Processamento de Imagem Assistida por Computador/métodos , Linguagens de Programação , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Fatores de Tempo , Tomografia Computadorizada por Raios X
14.
Med Phys ; 39(5): 2930-46, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559664

RESUMO

PURPOSE: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of "panoramic CBCT," which can image patients at the treatment position with an imaging volume as large as practically needed. METHODS: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180° + θ(cone) where θ(cone) is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360° gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and imaging dose for both standard and panoramic CBCT. RESULTS: Truncated images with artifacts were observed for the CBCT reconstruction using projection images of the central view only. When the image stitching was perfect, complete reconstruction was obtained for the panoramic CBCT using the modified SART with the image quality similar to the gold standard (full-scan, full-fan CBCT using one large imaging panel). Imperfect image stitching, on the other hand, lead to (streak, line, or ring) reconstruction artifacts, reduced CNR, and/or distorted geometry. Results from Monte Carlo simulations showed that, for identical imaging quality, the imaging dose was lower for the panoramic CBCT than that acquired with one large imaging panel. For the same imaging dose, the CNR of the three-view panoramic CBCT was 50% higher than that of the regular CBCT using one big panel. CONCLUSIONS: The authors have developed a panoramic CBCT technique and demonstrated with simulation data that it can image tumors of any location for patients of any size at the treatment position with comparable or less imaging dose and time. However, the image quality of this CBCT technique is sensitive to the reconstruction artifacts caused by imperfect image stitching. Better algorithms are therefore needed to improve the accuracy of image stitching for panoramic CBCT.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Imagens de Fantasmas , Controle de Qualidade
15.
Med Phys ; 39(5): 2536-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559624

RESUMO

PURPOSE: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). METHODS: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. RESULTS: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm(3) (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm(3) (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. CONCLUSIONS: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Máquina de Vetores de Suporte , Automação , Humanos , Órgãos em Risco/efeitos da radiação , Decúbito Ventral , Decúbito Dorsal
17.
J Appl Clin Med Phys ; 13(1): 3385, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22231206

RESUMO

The purpose of this study was to determine dose to the planning target volume (PTV) and organs at risk (OARs) from portal imaging (PI) of the craniofacial region in pediatric brain tumor patients treated with intensity-modulated radiation therapy (IMRT). Twenty pediatric brain tumor patients were retrospectively studied. Each received portal imaging of treatment fields and orthogonal setup fields in the craniofacial region. The number of PI and monitor units used for PI were documented for each patient. Dose distributions and dose-volume histograms were generated to quantify the maximum, minimum, and mean dose to the PTV, and the mean dose to OARs through PI acquisition. The doses resulting from PI are reported as percentage of prescribed dose. The average maximum, minimum, and mean doses to PTV from PI were 2.9 ± 0.7%, 2.2 ± 1.0%, and 2.5 ± 0.7%, respectively. The mean dose to the OARs from PI were brainstem 2.8 ± 1.1%, optic nerves/chiasm 2.6 ± 0.9%, cochlea 2.6 ± 0.9%, hypothalamus/pituitary 2.4 ± 0.6%, temporal lobes 2.3 ± 0.6%, thyroid 1.6 ± 0.8%, and eyes 2.6 ± 0.9%. The mean number of portal images and the mean number of PI monitor units per patient were 58.8 and 173.3, respectively. The dose from PI while treating pediatric brain tumors using IMRT is significant (2%-3% of the prescribed dose). This may result in exceeding the tolerance limit of many critical structures and lead to unwanted late complications and secondary malignancies. Dose contributions from PI should be considered in the final documented dose. Attempts must be made in PI practices to lower the imaging dose when feasible.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Ecrans Intensificadores para Raios X , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Radiografia , Adulto Jovem
18.
Cureus ; 14(8): e28606, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36185932

RESUMO

Objective To improve the efficiency of frame-based and frameless Gamma Knife® Icon™ (GKI) treatments by analyzing the workflows of both treatment approaches and identifying steps that lead to prolonged patient in-clinic or treatment time. Methods The treatment processes of 57 GKI patients, 16 frame-based and 41 frameless cases were recorded and analyzed. For frame-based treatments, time points were recorded for various steps in the process, including check-in, magnetic resonance imaging (MRI) completion, plan approval, and treatment start/end times. The time required for completing each step was calculated and investigated. For frameless treatments, the actual and planned treatment times were compared to evaluate the patient tolerance of the treatment. In addition, the time spent on room cleaning and preparation between treatments was also recorded and analyzed. Results For frame-based cases, the average in-clinic time was 6.3 hours (ranging from 4 to 8.7 hours). The average time from patient check-in to plan approval was 4.2 hours (ranging from 2.8 to 5.5 hours), during which the frame was placed, stereotactic reference MRI images were taken, target volumes were contoured, and the treatment plan was developed and second-checked. For patients immobilized with a mask, treatment pauses triggered by the intra-fractional motion monitoring system resulted in a significantly longer actual treatment time than the planned time. In 50 (or 55%) of the 91 frameless treatments, the patient on-table time was longer than the planned treatment time by more than 10 minutes, and in 19 (or 21%) of the treatments the time difference was larger than 20 minutes. Major treatment interruptions, defined as pauses leading to a longer than 10-minute delay, were more commonly encountered in patients with a planned treatment time longer than 40 minutes, which accounted for 64% of the recorded major interruptions. Conclusion For frame-based cases, the multiple pretreatment steps (from patient check-in to plan approval) in the workflow were time-consuming and resulted in prolonged patient in-clinic time. These pretreatment steps may be shortened by performing some of these steps before the treatment day, e.g., pre-planning the treatment using diagnostic MRI scans acquired a few days earlier. For frameless patients, we found that a longer planned treatment time is associated with a higher chance of treatment interruption. For patients with a long treatment time, a planned break or consideration of fractionated treatments (i.e., 3 to 5 fractionated stereotactic radiosurgery) may optimize the workflow and improve patient satisfaction.

19.
Med Phys ; 38(5): 2724-30, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21776809

RESUMO

PURPOSE: The purpose of this study was to investigate how incorporation of magnetic resonance spectroscopy imaging (MRSI) into radiotherapy planning would increase the target volume for patients with recurrent glioma. METHODS: After prior standard radiotherapy, 25 patients with recurrent glioma were treated with bevacizumab and concurrent hypofractionated stereotactic radiotherapy (HFSRT), delivering 30 Gy in five fractions. MRSI were acquired for 12 patients. Areas with markedly higher choline levels relative to the levels of total creatine and N-acetylaspartate were identified and referred to as MRSI voxels with elevated metabolite ratios (EMR). Gross tumor volume (GTV) consisted of contrast-enhancing tumor on T1-weighted magnetic resonance images (MRI) and computed tomography. Clinical target volume (CTV) was GTV + 5 mm margin and MRSI voxels with EMR. Overall survival (OS) and 6-month progression free survival (PFS) for these patients were reported in a prior publication [Gutin et al., Int. J. Radiat. Oncol., Biol., Phys. 75(1), 156-163 (2009)], and the outcome was correlated with the GTV and the volume of MRSI voxels with EMR in this study. RESULTS: Seven of the 12 patients had MRSI voxels with EMR. If none of the MRSI voxels with EMR were included, the CTV would range from 9.2 to 73.0 cm3 with a median of 31.0 cm3, whereas if all voxels were included, the CTV would range from 27.4 to 74.4 cm3 with a median of 35.0 cm3. For three of the seven patients, including the voxels with EMR, would have increased the CTV by 14%-23%. For one patient, where the MRSI voxels with EMR did not overlap the GTV, including these voxels would increase the CTV by 198%. No correlation could be found between the OS and PFS and the GTV or the volume of MRSI voxels with EMR. CONCLUSIONS: Seven of 12 patients with recurrent glioma had MRSI voxels with EMR. For four of these seven patients, including the MRSI voxels with EMR, significantly increased the CTV. This study does not have statistical power to conclude on the importance of including areas with MRSI-suspect disease into the radiation target volume.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/radioterapia , Glioma/diagnóstico , Glioma/radioterapia , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Resultado do Tratamento
20.
Med Phys ; 37(10): 5341-50, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21089769

RESUMO

PURPOSE: NYU 05-181 protocol compared the CT simulation in both supine and prone positions for 400 patients with breast cancer (200 left-breast and 200 right-breast) to identify which setup is better at sparing heart and lung involvement in the treatment process. The results demonstrated that all right-breast patients benefited from the prone treatment position, while for left-breast patients, 85% were better treated prone and 15% were better treated supine. Using the clinical data collected from this protocol, the authors aimed at developing an automated tool capable of identifying which of the left-breast cancer patients are better treated supine without obtaining a second CT scan in the supine position. METHODS: Prone CT scans from 198 of the 200 left-breast cancer patients enrolled in NYU 05-181 protocol were deidentified and exported to a dedicated research planning workstation. Three-dimensional geometric features of the organs at risk and tumor bed were extracted. A two-stage classifier was used to classify patients into the prone class or the supine class. In the first stage, the authors use simple thresholding to divide the patients into two groups based on their in-field heart volume. For patients with in-field heart volume < or = 0.1 cc, the prone position was chosen as the preferred treatment position. Patients with in-field heart volume > 0.1 cc will be further classified in the second stage by a weighted support vector machine (SVM). The weight parameters of the SVM were adjusted to maximize the specificity [true-supine/(true-supine+false-prone)] at the cost of lowering but still maintaining reasonable sensitivity [true-prone/(true-prone+false-supine)]. The authors used K-fold cross validations to test the performance of the SVM classifier. A feature selection algorithm was also used to identify features that give the best classification performance. RESULTS: After the first stage, 49 of the 198 left-breast cancer patients were found to have > 0.1 cc of in-field heart volume. The three geometric features of heart orientation, distance between heart and tumor, and in-field lung were selected by the feature selection algorithm in the second stage of the two-stage classifier to give the best predefined weighted accuracy. The overall sensitivity and specificity of the proposed method were found to be 90.4% and 99.3%, respectively. Using two-stage classification, the authors reduced the proportion of prone-treated patients that need a second supine CT scan down to 16.3/170 or 9.6%, as compared to 21/170 or 12.4% when the authors use only the first stage (thresholding) for classification. CONCLUSIONS: The authors' study showed that a feature-based classifier is feasible for predicting the preferred treatment position, based on features extracted from prone CT scans. The two-stage classifier achieved very high specificity at an acceptable expense of sensitivity.


Assuntos
Inteligência Artificial , Neoplasias da Mama/radioterapia , Posicionamento do Paciente/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Fenômenos Biofísicos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Órgãos em Risco , Decúbito Ventral , Estudos Prospectivos , Lesões por Radiação/prevenção & controle , Decúbito Dorsal , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa