Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683997

RESUMO

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Microfluídica/métodos , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Fenótipo , Linhagem Celular Tumoral , Imunoterapia/métodos , Perfilação da Expressão Gênica/métodos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação
2.
Opt Lett ; 49(11): 3058-3061, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824327

RESUMO

Lensless imagers based on diffusers or encoding masks enable high-dimensional imaging from a single-shot measurement and have been applied in various applications. However, to further extract image information such as edge detection, conventional post-processing filtering operations are needed after the reconstruction of the original object images in the diffuser imaging systems. Here, we present the concept of a temporal compressive edge detection method based on a lensless diffuser camera, which can directly recover a time sequence of edge images of a moving object from a single-shot measurement, without further post-processing steps. Our approach provides higher image quality during edge detection, compared with the "conventional post-processing method." We demonstrate the effectiveness of this approach by both numerical simulation and experiments. The proof-of-concept approach can be further developed with other image post-processing operations or versatile computer vision assignments toward task-oriented intelligent lensless imaging systems.

3.
Nano Lett ; 22(17): 7136-7143, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36018249

RESUMO

Single-beam super-resolution microscopy, also known as superlinear microscopy, exploits the nonlinear response of fluorescent probes in confocal microscopy. The technique requires no complex purpose-built system, light field modulation, or beam shaping. Here, we present a strategy to enhance this technique's spatial resolution by modulating excitation intensity during image acquisition. This modulation induces dynamic optical nonlinearity in upconversion nanoparticles (UCNPs), resulting in variations of nonlinear fluorescence response in the obtained images. The higher orders of fluorescence response can be extracted with a proposed weighted finite difference imaging algorithm from raw fluorescence images to generate an image with higher resolution than superlinear microscopy images. We apply this approach to resolve single nanoparticles in a large area, improving the resolution to 132 nm. This work suggests a new scope for the development of dynamic nonlinear fluorescent probes in super-resolution nanoscopy.


Assuntos
Corantes Fluorescentes , Nanopartículas , Algoritmos , Microscopia Confocal/métodos
4.
J Am Chem Soc ; 144(21): 9443-9450, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603745

RESUMO

Efficient transfection of therapeutic agents and timely potency testing are two key factors hindering the development of cellular therapy. Here we present a cellular-nanoporation and exosome assessment device, a quantitative platform for nanochannel-based cell electroporation and exosome-based in situ RNA expression analysis. In its application to transfection of anti-miRNAs and/or chemotherapeutics into cells, we have systematically described the differences in RNA expression in secreted exosomes and assessed cellular therapies in real time.


Assuntos
Exossomos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Transfecção
5.
Small ; 18(12): e2106196, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322558

RESUMO

Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.


Assuntos
DNA , Microfluídica
6.
Nano Lett ; 21(11): 4878-4886, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33830766

RESUMO

The genetic heterogeneities in cancer cells pose challenges to achieving precise drug treatment in a widely applicable manner. Most single-cell gene analysis methods rely on cell lysis for gene extraction and identification, showing limited capacity to provide the correlation of genetic properties and real-time cellular behaviors. Here, we report a single living cell analysis nanoplatform that enables interrogating gene properties and drug resistance in millions of single cells. We designed a Domino-probe to identify intracellular target RNAs while releasing 10-fold amplified fluorescence signals. An on-chip addressable microwell-nanopore array was developed for enhanced electro-delivery of the Domino-probe and in situ observation of cell behaviors. The proof-of-concept of the system was validated in primary lung cancer cell samples, revealing the positive-correlation of the ratio of EGFR mutant cells with their drug susceptibilities. This platform provides a high-throughput yet precise tool for exploring the relationship between intracellular genes and cell behaviors at the single-cell level.


Assuntos
Neoplasias Pulmonares , Análise de Célula Única , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação
7.
Anal Chem ; 93(4): 1855-1865, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33325676

RESUMO

Identifying molecular biomarkers promises to significantly improve the accuracy in cancer diagnosis at its early stage. DNA nanomachines, which are designable and switchable nanostructures made of DNA, show broad potential to detect tumor biomarkers with noninvasive, inexpensive, highly sensitive, and highly specific advantages. This Feature summarizes the recent DNA nanomachine-based platforms for the early detection of cancer biomarkers, both from body fluids and in cells.


Assuntos
Biomarcadores Tumorais/química , Técnicas Biossensoriais/instrumentação , DNA/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Neoplasias/diagnóstico , Técnicas Biossensoriais/métodos , Humanos
8.
Small ; 16(51): e2004917, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241661

RESUMO

In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.


Assuntos
Eletroporação , Microfluídica , Sobrevivência Celular , Engenharia Tecidual , Transfecção
9.
Small ; 16(26): e2000584, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452612

RESUMO

Measuring changes in enzymatic activity over time from small numbers of cells remains a significant technical challenge. In this work, a method for sampling the cytoplasm of cells is introduced to extract enzymes and measure their activity at multiple time points. A microfluidic device, termed the live cell analysis device (LCAD), is designed, where cells are cultured in microwell arrays fabricated on polymer membranes containing nanochannels. Localized electroporation of the cells opens transient pores in the cell membrane at the interface with the nanochannels, enabling extraction of enzymes into nanoliter-volume chambers. In the extraction chambers, the enzymes modify immobilized substrates, and their activity is quantified by self-assembled monolayers for matrix-assisted laser desorption/ionization (SAMDI) mass spectrometry. By employing the LCAD-SAMDI platform, protein delivery into cells is demonstrated. Next, it is shown that enzymes can be extracted, and their activity measured without a loss in viability. Lastly, cells are sampled at multiple time points to study changes in phosphatase activity in response to oxidation by hydrogen peroxide. With this unique sampling device and label-free assay format, the LCAD with SAMDI enables a powerful new method for monitoring the dynamics of cellular activity from small populations of cells.


Assuntos
Eletroporação , Ensaios Enzimáticos , Enzimas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Linhagem Celular Tumoral , Células/enzimologia , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Enzimas/análise , Enzimas/metabolismo , Humanos , Tempo
10.
Mol Ther ; 24(5): 956-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26782640

RESUMO

Nanochannel electroporation (NEP) was applied to deliver precise dosages of myeloid cell leukemia-1 (Mcl-1)-specific siRNA and molecular beacons to two types of acute myeloid leukemia (AML) cells, FMS-like tyrosine kinase-3 wild-type (WT) and internal tandem duplications (ITD) type at the single-cell level. NEP, together with single-cell quantitative reverse transcription PCR, led to an observation showing nearly 20-folds more Mcl-1 siRNA than MCL1 mRNA were required to induce cell death for both cell lines and patient blasts, i.e., ~8,800 siRNAs for ~500 ± 50 mRNAs in ITD cells and ~6,000 siRNAs for ~300 ± 50 mRNAs in WT cells. A time-lapse study revealed that >75% MCL1 mRNA was downregulated within 1 hour after delivery of a small amount of siRNA. However, additional siRNA was required to inhibit the newly transcribed mRNA for >12 hours until the cell lost its ability of self-protection recovery. A multidelivery strategy of low doses and short delivery interval, which require 77% less siRNA and has the potential of lower side effects and clinical cost, was as effective as a single high-dose siRNA delivery. Our method provides a viable analytical tool to investigate gene silencing at the single-cell level for oligonucleotide-based therapy.


Assuntos
Leucemia Mieloide Aguda/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Análise de Célula Única/métodos , Tirosina Quinase 3 Semelhante a fms/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletroporação , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequências de Repetição em Tandem , Transfecção
11.
Nano Lett ; 16(9): 5326-32, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27420544

RESUMO

Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Glioblastoma/patologia , Células-Tronco Neoplásicas/citologia , Animais , Apoptose , Humanos , Camundongos , Células Tumorais Cultivadas
12.
Small ; 12(43): 5971-5980, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27648733

RESUMO

While electroporation has been widely used as a physical method for gene transfection in vitro and in vivo, its application in gene therapy of cardiovascular cells remains challenging. Due to the high concentration of ion-transport proteins in the sarcolemma, conventional electroporation of primary cardiomyocytes tends to cause ion-channel activation and abnormal ion flux, resulting in low transfection efficiency and high mortality. In this work, a high-throughput nanoelectroporation technique based on a nanochannel array platform is reported, which enables massively parallel delivery of genetic cargo (microRNA, plasmids) into mouse primary cardiomyocytes in a controllable, highly efficient, and benign manner. A simple "dipping-trap" approach was implemented to precisely position a large number of cells on the nanoelectroporation platform. With dosage control, our device precisely titrates the level of miR-29, a potential therapeutic agent for cardiac fibrosis, and determines the minimum concentration of miR-29 causing side effects in mouse primary cardiomyocytes. Moreover, the dose-dependent effect of miR-29 on mitochondrial potential and homeostasis is monitored. Altogether, our nanochannel array platform provides efficient trapping and transfection of primary mouse cardiomyocyte, which can improve the quality control for future microRNA therapy in heart diseases.


Assuntos
Miócitos Cardíacos/metabolismo , Nanopartículas/química , Nanotecnologia/métodos , Transfecção/métodos , Animais , Células Cultivadas , Simulação por Computador , Eletroporação , Camundongos , MicroRNAs/metabolismo
13.
Small ; 11(15): 1818-1828, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25469659

RESUMO

A novel high-throughput magnetic tweezers-based 3D microchannel electroporation system capable of transfecting 40 000 cells/cm(2) on a single chip for gene therapy, regenerative medicine, and intracellular detection of target mRNA for screening cellular heterogeneity is reported. A single cell or an ordered array of individual cells are remotely guided by programmable magnetic fields to poration sites with high (>90%) cell alignment efficiency to enable various transfection reagents to be delivered simultaneously into the cells. The present technique, in contrast to the conventional vacuum-based approach, is significantly gentler on the cellular membrane yielding >90% cell viability and, moreover, allows transfected cells to be transported for further analysis. Illustrating the versatility of the system, the GATA2 molecular beacon is delivered into leukemia cells to detect the regulation level of the GATA2 gene that is associated with the initiation of leukemia. The uniform delivery and a sharp contrast of fluorescence intensity between GATA2 positive and negative cells demonstrate key aspects of the platform for gene transfer, screening and detection of targeted intracellular markers in living cells.


Assuntos
Membrana Celular/química , DNA/química , DNA/genética , Eletroporação/instrumentação , Imãs , Transfecção/instrumentação , Membrana Celular/efeitos da radiação , Eletroporação/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos , Pinças Ópticas , Transfecção/métodos
14.
Small ; 10(5): 1015-23, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24173879

RESUMO

A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 µm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.


Assuntos
Eletroporação/instrumentação , Eletroporação/métodos , Análise em Microsséries/instrumentação , Microfluídica/instrumentação , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Transfecção/métodos , Animais , DNA/metabolismo , Desenho de Equipamento , Fluorescência , Camundongos , Nanofios/ultraestrutura , Plasmídeos/metabolismo
15.
Small Methods ; 8(1): e2301068, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759393

RESUMO

The last decade has witnessed remarkable advancements in bioelectronics, ushering in a new era of wearable and implantable devices for drug delivery. By utilizing miniaturized system design and/or flexible materials, bioelectronics illustrates ideal integration with target organs and tissues, making them ideal platforms for localized drug delivery. Furthermore, the development of electrically assisted drug delivery systems has enhanced the efficiency and safety of therapeutic administration, particularly for the macromolecules that encounter additional challenges in penetrating biological barriers. In this review, a concise overview of recent progress in bioelectronic devices for in vivo localized drug delivery, with highlights on the latest trends in device design, working principles, and their corresponding functionalities, is provided. The reported systems based on their targeted delivery locations as wearable systems, ingestible systems, and implantable systems are categorized. Each category is introduced in detail by highlighting the special requirements for devices and the corresponding solutions. The remaining challenges in this field and future directions are also discussed.


Assuntos
Dispositivos Eletrônicos Vestíveis , Próteses e Implantes , Sistemas de Liberação de Medicamentos
16.
Small Methods ; 8(3): e2300915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994267

RESUMO

In vitro, drug assessment holds tremendous potential to success in novel drug development and precision medicine. Traditional techniques for drug assessment, however, face remarkable challenges to achieve high speed, as limited by incubation-based drug delivery (>several hours) and cell viability measurements (>1 d), which significantly compromise the efficacy in clinical trials. In this work, a nano-electroporation-DNA tensioner platform is reported that shortens the time of drug delivery to less than 3 s, and that of cellular mechanical force analysis to 30 min. The platform adopts a nanochannel structure to localize a safe electric field for cell perforation, while enhancing delivery speed by 103 times for intracellular delivery, as compared to molecular diffusion in coculture methods. The platform is further equipped with a DNA tensioner to detect cellular mechanical force for quantifying cell viability after drug treatment. Systematic head-to-head comparison, by analyzing FDA (food and drug administration)-approved drugs (paclitaxel, doxorubicin), demonstrated the platform with high speed, efficiency, and safety, showing a simple yet powerful tool for clinical drug screening and development.


Assuntos
Sistemas de Liberação de Medicamentos , Eletroporação , Estados Unidos , Eletroporação/métodos , Terapia com Eletroporação , Difusão , DNA
17.
Nanoscale ; 16(22): 10500-10521, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38757536

RESUMO

Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.


Assuntos
Eletroporação , Terapia Genética , Humanos , Terapia Genética/métodos , Eletroporação/métodos , Animais , Técnicas de Transferência de Genes , Nanotecnologia , Nanoestruturas/química , Transfecção/métodos
18.
ACS Biomater Sci Eng ; 10(9): 5595-5608, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39143919

RESUMO

Analysis of biomarkers in living cells is crucial for deciphering the dynamics of cells as well as for precise diagnosis of diseases. DNA biosensors employ DNA sequences as probes to offer insights into living cells, and drive progress in disease diagnosis and drug development. In this review, we present recent advances in DNA biosensors for detecting biomarkers in living cells. The basic structural components of DNA biosensors and the signal output method are presented. The strategies of DNA biosensors crossing the cell membrane are also described, including coincubation, nanocarriers, and nanoelectroporation techniques. Based on biomarker categorization, we detail recent applications of DNA biosensors for detecting small molecules, RNAs, proteins, and integrated targets in living cells. Furthermore, the future development directions of DNA biosensors are summarized to encourage further research in this growing field.


Assuntos
Biomarcadores , Técnicas Biossensoriais , DNA , Técnicas Biossensoriais/métodos , Humanos , Biomarcadores/metabolismo , Biomarcadores/análise , Animais
19.
ACS Nano ; 18(4): 2872-2884, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236597

RESUMO

Strategies for rapid, effective nucleic acid processing hold tremendous significance to the clinical analysis of circulating tumor DNA (ctDNA), a family of important markers indicating tumorigenesis and metastasis. However, traditional techniques remain challenging to achieve efficient DNA enrichment, further bringing about complicated operation and limited detection sensitivity. Here, we developed an ion concentration polarization microplatform that enabled highly rapid, efficient enrichment and purification of ctDNA from a variety of clinical samples, including serum, urine, and feces. The platform demonstrated efficiently separating and enriching ctDNA within 30 s, with a 100-fold improvement over traditional methods. Integrating an on-chip isothermal amplification module, the platform further achieved 100-fold enhanced sensitivity in ctDNA detection, which significantly eliminated false-negative results in the serum or urine samples due to the low abundance of ctDNA. Such a simple-designed platform offers a user-friendly yet powerful diagnosis technique with a wide applicability, ranging from early tumor diagnosis to infection screening.


Assuntos
DNA Tumoral Circulante , Neoplasias , Ácidos Nucleicos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , DNA Tumoral Circulante/genética , Carcinogênese , Técnicas de Amplificação de Ácido Nucleico/métodos
20.
Biosens Bioelectron ; 250: 116096, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316089

RESUMO

Fast and accurate detection of Cryptococcus and precise differentiation of its subtypes is of great significance in protecting people from cryptococcal disease and preventing its spread in populations. However, traditional Cryptococcus identification and detection techniques still face significant challenges in achieving high analysis speed as well as high sensitivity. In this work, we report an electric microfluidic biochip. Compared to conventional methods that take several hours or even a day, this chip can detect Cryptococcus within 20 min, and achieve its maximum detection limit within 1 h, with the ability to differentiate between the Cryptococcus neoformans (NEO) and rare Cryptococcus gattii (GAT) efficiently, which accounts for nearly 100%. This device integrated two functional zones of an electroporation lysis (EL) zone for rapid cell lysis (<30 s) and an electrochemical detection (ED) zone for sensitive analysis of the released nucleic acids. The EL zone adopted a design of microelectrode arrays, which obtains a large electric field intensity at the constriction of the microchannel, addressing the safety concerns associated with high-voltage lysis. The device enables a limit of detection (LOD) of 60 pg/mL for NEO and 100 pg/mL for GAT through the modification of nanocomposites and specific probes. In terms of the detection time and sensitivity, the integrated microfluidic biochip demonstrates broad potential in Cryptococcus diagnosis and disease prevention.


Assuntos
Técnicas Biossensoriais , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Criptococose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa