Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695539

RESUMO

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Assuntos
Carpas , Proteólise , Receptores de Reconhecimento de Padrão , Rhabdoviridae , Proteínas com Motivo Tripartido , Proteínas Virais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Carpas/virologia , Proteína DEAD-box 58/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Imunidade Inata , Receptores de Reconhecimento de Padrão/metabolismo , Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Transdução de Sinais , Proteínas com Motivo Tripartido/deficiência , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Proteínas Virais/metabolismo , Viremia/veterinária , Viremia/virologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
J Immunol ; 210(2): 191-203, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36445692

RESUMO

TANK-binding kinase 1 (TBK1) undergoes alternative splicing, and the previously reported TBK1 isoforms are negative regulators of RIG-I-like receptor-mediated type I IFN production. Although a study has suggested that grass carp TBK1 has an opposite effect at high- and low-titer of grass carp reovirus (GCRV) infection, the functions of grass carp TBK1 isoforms in GCRV infection remain unclear. In this study, we show that a TBK1 isoform from grass carp (Ctenopharyngodon idellus) named as gcTBK1_tv3, which has a 1-aa difference with zebrafish TBK1_tv3, inhibits the replication and infection of GCRV both at high and low titers of infection in C. idellus kidney cells. gcTBK1_tv3 can colocalize and interact with the NS80 and NS38 proteins of GCRV. Furthermore, gcTBK1_tv3 specifically degrades the NS80 and NS38 proteins of GCRV through the ubiquitin-proteasome pathway. Mechanistically, gcTBK1_tv3 promotes the degradation of NS80 or NS38 for K48-linked ubiquitination by targeting the Lys503 residue of NS80 or Lys328 residue of NS38, respectively, which ultimately impairs the production of cytoplasmic viral inclusion bodies and limits GCRV replication and infection. Taken together, our findings provide insight into the function of TBK1 isoform in the antiviral immune response and demonstrate that TBK1 isoform can target the nonstructural proteins of GCRV for impairing the formation of viral inclusion bodies.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Proteínas não Estruturais Virais/metabolismo , Carpas/metabolismo , Peixe-Zebra , Linhagem Celular , Infecções por Reoviridae/veterinária , Isoformas de Proteínas/metabolismo , Anticorpos Antivirais/metabolismo
3.
J Immunol ; 211(6): 1006-1019, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548504

RESUMO

Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRß, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Infecções por Reoviridae , Reoviridae , Animais , Humanos , Antivirais/farmacologia , Receptores X do Fígado/metabolismo , Carpas/metabolismo , Proteína de Ligação a CREB/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Mamíferos/metabolismo , Fator Regulador 3 de Interferon/metabolismo
4.
Fish Shellfish Immunol ; 151: 109730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942250

RESUMO

RLR helicases RIG-I and MDA5, which are known as pattern recognition receptors to sense cytoplasmic viral RNAs and trigger antiviral immune responses, are DExD/H-box helicases. In teleost, whether and how non-RLR helicases regulate RLR helicases to affect viral infection remains unclear. Here, we report that the non-RLR helicase DHX40 from grass carp (namely gcDHX40) is a negative regulator of grass carp reovirus (GCRV) infection and RLR-mediated type I IFN production. GcDHX40 was a cytoplasmic protein. Ectopic expression of gcDHX40 facilitated GCRV replication and suppressed type I IFN production induced by GCRV infection and by those genes involved the RLR antiviral signaling pathway. Mechanistically, gcDHX40 promoted the generation of viral inclusion bodies (VIBs) by interacting with the NS38 protein of GCRV. Additionally, gcDHX40 interacted with RLR helicase, and impaired the formation of RLR-MAVS functional complexes. Taken together, our results indicate that gcDHX40 is a novel important proviral host factor involving in promoting the generation of GCRV VIBs and inhibiting the production of RLR-mediated type I IFNs.


Assuntos
Carpas , RNA Helicases DEAD-box , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Infecções por Reoviridae , Reoviridae , Proteínas não Estruturais Virais , Animais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Carpas/imunologia , Carpas/genética , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/imunologia , Reoviridae/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/metabolismo , Imunidade Inata/genética , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/imunologia , Regulação da Expressão Gênica/imunologia
5.
J Immunol ; 208(3): 707-719, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022273

RESUMO

Grass carp reovirus (GCRV) is a highly virulent RNA virus that mainly infects grass carp and causes hemorrhagic disease. The roles of nonstructural proteins NS38 and NS80 of GCRV-873 in the viral replication cycle and viral inclusion bodies have been established. However, the strategies that NS38 and NS80 used to avoid host antiviral immune response are still unknown. In this study, we report the negative regulations of NS38 and NS80 on the RIG-I-like receptors (RLRs) antiviral signaling pathway and the production of IFNs and IFN-stimulated genes. First, both in the case of overexpression and GCRV infection, NS38 and NS80 inhibited the IFN promoter activation induced by RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7 and mRNA abundance of key antiviral genes involved in the RLR-mediated signaling. Second, both in the case of overexpression and GCRV infection, NS38 interacted with piscine TBK1 and IRF3, but not with piscine RIG-I, MDA5, MAVS, and TNF receptor-associated factor (TRAF) 3. Whereas NS80 interacted with piscine MAVS, TRAF3, and TBK1, but not with piscine RIG-I, MDA5, and IRF3. Finally, both in the case of overexpression and GCRV infection, NS38 inhibited the formation of the TBK1-IRF3 complex, but NS80 inhibited the formation of the TBK1-TRAF3 complex. Most importantly, NS38 and NS80 could hijack piscine TBK1 and IRF3 into the cytoplasmic viral inclusion bodies and inhibit the translocation of IRF3 into the nucleus. Collectively, all of these data demonstrate that GCRV nonstructural proteins can avoid host antiviral immune response by targeting the RLR signaling pathway, which prevents IFN-stimulated gene production and facilitates GCRV replication.


Assuntos
Carpas/virologia , RNA Helicases DEAD-box/metabolismo , Evasão da Resposta Imune/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Células Cultivadas , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Fatores Reguladores de Interferon/metabolismo , Interferons/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/patologia , Fator 3 Associado a Receptor de TNF/metabolismo , Replicação Viral/fisiologia
6.
Fish Shellfish Immunol ; 142: 109178, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863126

RESUMO

The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Animais , Citocinas , Peixe-Zebra , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proliferação de Células , Edwardsiella/fisiologia , Mamíferos/metabolismo
7.
J Immunol ; 204(8): 2216-2231, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169843

RESUMO

Nucleotide oligomerization domain-like receptors (NLRs) and RIG-I-like receptors (RLRs) detect diverse pathogen-associated molecular patterns to activate the innate immune response. The role of mammalian NLR NOD1 in sensing bacteria is well established. Although several studies suggest NOD1 also plays a role in sensing viruses, the mechanisms behind this are still largely unknown. In this study, we report on the synergism and antagonism between NOD1 and MDA5 isoforms in teleost. In zebrafish, the overexpression of NOD1 enhances the antiviral response and mRNA abundances of key antiviral genes involved in RLR-mediated signaling, whereas the loss of NOD1 has the opposite effect. Notably, spring viremia of carp virus-infected NOD1-/- zebrafish exhibit reduced survival compared with wild-type counterparts. Mechanistically, NOD1 targets MDA5 isoforms and TRAF3 to modulate the formation of MDA5-MAVS and TRAF3-MAVS complexes. The cumulative effects of NOD1 and MDA5a (MDA5 normal form) were observed for the binding with poly(I:C) and the formation of the MDA5a-MAVS complex, which led to increased transcription of type I IFNs and ISGs. However, the antagonism between NOD1 and MDA5b (MDA5 truncated form) was clearly observed during proteasomal degradation of NOD1 by MDA5b. In humans, the interactions between NOD1-MDA5 and NOD1-TRAF3 were confirmed. Furthermore, the roles that NOD1 plays in enhancing the binding of MDA5 to MAVS and poly(I:C) are also evolutionarily conserved across species. Taken together, our findings suggest that mutual regulation between NOD1 and MDA5 isoforms may play a crucial role in the innate immune response and that NOD1 acts as a positive regulator of MDA5/MAVS normal form-mediated immune signaling in vertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Imunidade Inata , Proteína Adaptadora de Sinalização NOD1/deficiência , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
8.
Fish Shellfish Immunol ; 105: 297-309, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707296

RESUMO

No studies systematically examined the intestinal immune response for yellow stage of European eel (Anguilla anguilla) with Aeromonas hydrophila infection by time-resolved RNA-seq. Here, we examined transcriptional profiles of the intestines at three-time points following infection with A. hydrophila. Intraperitoneal injections caused mortalities within 48 h post-injection (hpi), with the survival rate 87.5% at 24 hpi and 83.9% at 48 hpi. The result from KEGG pathway enrichment analysis showed that the immune related "cytosolic DNA-sensing pathway" was significantly enriched at the first and second time points (6 hpi and 18 hpi), with the up-regulated expression of irf3, il1b, tnfaip3, cxcl8a, ap1-2, c-fos, polr3d, polr3g and polr3k both at 6 hpi and 18 hpi, but not at the third time point (36 hpi). According to the KEGG annotation, 326 immune and inflammation-related DEGs were found. The co-expression network of those 326 DEGs revealed the existence of three modules, and tlr1 was found to be in the center of the biggest module which contained massive DEGs from "signal transduction" and "transport and catabolism". The c3 isoforms showed different expression pattern among the three time points, indicating a unique activation of complement systems at 18 hpi. Furthermore, two cathelicidins (aaCATH_1 and aaCATH_2) were highly up-regulated at the first two time points, and the bacterial growth inhibition assay revealed their antibacterial properties against A. hydrophila. Our data indicated the important roles of cytosolic DNA-sensing pathway, as well as transcripts including tlr1, c3, polr and cathelicidins in the intestine of A. anguilla in response to A. hydrophila infection. The present study will provide leads for functional studies of host-pathogen interactions.


Assuntos
Anguilla/genética , Anguilla/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Transcrição Gênica/imunologia , Aeromonas hydrophila/fisiologia , Animais , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Intestinos/imunologia , RNA-Seq/veterinária
9.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207669

RESUMO

Astaxanthin is a natural lipid-soluble and red-orange carotenoid. Due to its strong antioxidant property, anti-inflammatory, anti-apoptotic, and immune modulation, astaxanthin has gained growing interest as a multi-target pharmacological agent against various diseases. In the current review, the anti-inflammation mechanisms of astaxanthin involved in targeting for inflammatory biomarkers and multiple signaling pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3, have been described. Furthermore, the applications of anti-inflammatory effects of astaxanthin in neurological diseases, diabetes, gastrointestinal diseases, hepatic and renal diseases, eye and skin disorders, are highlighted. In addition to the protective effects of astaxanthin in various chronic and acute diseases, we also summarize recent advances for the inconsistent roles of astaxanthin in infectious diseases, and give our view that the exact function of astaxanthin in response to different pathogen infection and the potential protective effects of astaxanthin in viral infectious diseases should be important research directions in the future.


Assuntos
Doença , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Xantofilas/química , Xantofilas/farmacologia , Xantofilas/uso terapêutico
10.
Fish Shellfish Immunol ; 94: 355-372, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31533079

RESUMO

Streptococcus agalactiae is a major aquaculture pathogen infecting various saltwater and freshwater fish. To better understand the mechanism of the immune responses to S. agalactiae in wildtype zebrafish, the transcriptomic profiles of two organs containing mucosal-associated lymphoid tissues from S. agalactiae-infected and non-infected groups were obtained using RNA-seq techniques. In the intestines, 6735 and 12908 differently expressed genes (DEGs) were identified at 24 hpi and 48 hpi, respectively. Among 66 and 116 significantly enriched pathways, 15 and 21 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. A number of genes involved in Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Antigen processing and presentation, NF-kappa B signaling pathway and PI3K-Akt signaling pathway were significantly downregulated. In the skins, 3113 and 4467 DEGs were identified at 24 hpi and 48 hpi, respectively. Among 24 and 56 significantly enriched pathways, 4 and 13 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. More immune-related signaling pathways including Leukocyte transendothelial migration, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, TNF signaling pathway, Complement and coagulation cascades, Hematopoietic cell lineage and Jak-STAT signaling pathway were differently enriched for upregulated DEGs at 48 hpi, which were completely different from that in the intestines. Furthmore, comparative transcriptome analysis revealed that the downregulated 1618 genes and upregulated 1622 genes existed both at 24 hpi and 48 hpi for the intestine samples. In the skins, the downregulated 672 genes and upregulated 428 genes existed both at 24 hpi and 48 hpi. Three pathways related to immune processes were significantly enriched for downregulated DEGs both in the intestines and skins collected at 24 hpi and 48 hpi, which included Antigen processing and presentation, Intestinal immune network for IgA production and Hematopoietic cell lineage. Interaction network analysis of DEGs identified the main DEGs in the sub-network of complement and coagulation cascades both in the intestines and skins. Twenty of DEGs involved in complement and coagulation cascades were further validated by Real-time quantitative PCR. Altogether, the results obtained in this study will provide insight into the immune response of zebrafish against S. agalactiae XQ-1 infection in fatal conditions, and reveal the discrepant expression pattern of complement and coagulation cascades in the intestines and skins.


Assuntos
Imunidade Adaptativa/genética , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Transcriptoma/genética , Transcriptoma/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia
11.
Fish Shellfish Immunol ; 66: 112-119, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478260

RESUMO

Interleukin-8 (IL-8), a CXC-type chemokine, plays a key role in acute inflammation by recruiting neutrophils in mammals. In the present study, the open reading frame (ORF) of IL-8, encoding 99 amino acids was cloned in mandarin fish, and its function in inflammation was investigated. The IL-8 contains four conserved cysteine residues, with the first two forming the CXC signature motif. The genomic sequence of mandarin fish IL-8 has four exons and three introns, a typical gene organization of the CXC chemokine. Bioactive recombinant IL-8 (rIL-8) exhibited a chemotactic effect on head kidney leukocytes in vitro, and activates the transcription of the inflammatory genes, IL-8 and IL-1ß. When mandarin fish was challenged intraperitoneally with the pathogenic bacterium Flavobacterium columnare G4, the steady-state protein level of IL-8 was up-regulated in trunk kidney and head kidney. These results suggest that IL-8 is a functional CXC chemokine in mandarin fish, and plays a key role in the inflammatory responses towards bacterial infection.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Interleucina-8/genética , Interleucina-8/imunologia , Perciformes , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/genética , Infecções por Flavobacteriaceae/imunologia , Rim Cefálico/imunologia , Imunomodulação , Interleucina-1beta/genética , Interleucina-8/química , Leucócitos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária , Transcrição Gênica
12.
Int J Mol Sci ; 18(7)2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28714877

RESUMO

Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.


Assuntos
Processamento Alternativo/genética , Peixes/genética , Imunidade/genética , Mamíferos/genética , Precursores de RNA/genética , Animais , Proteínas de Transporte/genética , Precursores de RNA/metabolismo
13.
Fish Shellfish Immunol ; 54: 135-43, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27060200

RESUMO

TANK-binding kinase 1 (TBK1) is an essential serine/threonine-protein kinase required for Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I) -mediated induction of type I IFN and host antiviral defense. In the present study, TBK1-like transcript, namely TBK1L, was cloned from zebrafish. Compared with TBK1, TBK1L contains an incomplete S_TKc domain, and lacks UBL_TBK1_like domain. Realtime PCR showed that TBK1L was constitutively produced in embryos, early larvae and ZF4 cells, and unchanged in ZF4 cells following SVCV infection. Overexpression of TBK1 but not TBK1L resulted in significant activation of zebrafish IFN1 and IFN3 promoters. Similarly, TBK1L had little impact on the antiviral state of the cells. However, the overexpression of TBK1L negatively regulated the induction of zebrafish IFN1 and/or IFN3 promoters mediated by the retinoic acid-inducible gene I-like receptors (RLRs), MAVS and TBK1. In addition, the overexpression of TBK1L in zebrafish embryos led to the decreased production of many IFN-stimulated genes induced by TBK1. Collectively, these data support that zebrafish TBK1L negatively regulates RLRs-MAVS-TBK1 pathway.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata , Interferons/genética , Proteínas Serina-Treonina Quinases/genética , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Sequência de Aminoácidos , Animais , Doenças dos Peixes/virologia , Interferons/metabolismo , Filogenia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Transdução de Sinais , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
14.
Fish Shellfish Immunol ; 55: 173-85, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27235368

RESUMO

NOD2/RIPK2 signalling plays essential role in the modulation of innate and adaptive immunity in mammals. In this study, NOD2 was functionally characterized in zebrafish (Danio rerio), and its interaction with a receptor-interaction protein, RIPK2, and RLRs such as MDA5 and RIG-I, as well as the adaptor, MAVS was revealed in fish innate immunity. The expression of NOD2 and RIPK2 in ZF4 cells has been constitutive and can be induced by the infection of Edwardsiella tarda and SVCV. The NOD2 can sense MDP in PGN from Gram-negative and -positive bacteria. It is further revealed that the NOD2 and RIPK2 can activate NF-κB and IFN promoters, inducing significantly antiviral defense against SVCV infection. As observed in the reduced bacterial burden in RIPK2 overexpressed cells, RIPK2 also has a role in inhibiting the bacterial replication. The overexpression of NOD2 in zebrafish embryos resulted in the increase of immune gene expression, especially those encoding PRRs and cytokines involved in antiviral response such as MDA5, RIG-I, and type I IFNs, etc. Luciferase reporter assays and co-immunoprecipitation assays demonstrated that zebrafish NOD2 is associated with MDA5 and RIG-I in signalling pathway. In addition, it is further demonstrated that RIPK2 and MAVS in combination with NOD2 have an enhanced role in NOD2-mediated NF-κB and type I IFN activation. It is concluded that teleost fish NOD2 can not only sense MDP for activating innate immunity as reported in mammals, but can also interact with other PRRs to form a network in antiviral innate response.


Assuntos
Antibacterianos/metabolismo , Antivirais/metabolismo , Doenças dos Peixes/genética , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Proteínas de Peixe-Zebra/metabolismo
15.
PLoS Pathog ; 9(11): e1003736, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244163

RESUMO

We demonstrate for the first time in vertebrates, that alternative splicing of interferon (IFN) genes can lead to a functional intracellular IFN (iIFN). Fish IFN genes possess introns and in rainbow trout three alternatively spliced transcripts of the IFN1 gene exist. Two of the encoded IFNs are predicted to lack a signal peptide. When overexpressed these iIFNs induce antiviral responses. Variants of the two IFNR receptor chains (IFNAR1 and IFNAR2) lacking a signal peptide are also present in trout. Transfection of HEK 293T cells with the iIFN and iIFNR molecules results in STAT phosphorylation and induction of antiviral genes. These results show that fish possess a functioning iIFN system that may act as a novel defence to combat viral infection.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Interferons/imunologia , Oncorhynchus mykiss/imunologia , Viroses/imunologia , Viroses/veterinária , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Células HEK293 , Humanos , Interferons/genética , Oncorhynchus mykiss/genética , Fosforilação/genética , Fosforilação/imunologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Viroses/genética
16.
Vet Res ; 46: 136, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26589400

RESUMO

The emergence of an infectious viral disease caused by the Chinese giant salamander iridovirus (GSIV) has led to substantial economic losses. However, no more molecular information is available for the understanding of the mechanisms associated with virus-host interaction. In this study, de novo sequencing was used to obtain abundant high-quality ESTs and investigate differentially-expressed genes in the spleen of Chinese giant salamanders that were either infected or mock infected with GSIV. Comparative expression analysis indicated that 293 genes were down-regulated and 220 genes were up-regulated. Further enrichment analysis showed that the most enriched pathway is "complement and coagulation cascades", and significantly enriched diseases include "inherited thrombophilia", "immune system diseases", "primary immunodeficiency", "complement regulatory protein defects", and "disorders of nucleotide excision repair". Additionally, 30 678 simple sequence repeats (SSRs) from all spleen samples, 26 355 single nucleotide polymorphisms (SNPs) from the spleens of uninfected animals and 36 070 SNPs from the spleens of infected animals were detected. The large amount of variation was specific for the Chinese giant salamanders that were infected with GSIV. The results reported herein provided significant and new EST information that could contribute greatly in investigations into the molecular functions of immune genes in the Chinese giant salamander.


Assuntos
Infecções por Vírus de DNA/veterinária , Ranavirus/fisiologia , Transcriptoma , Urodelos , Animais , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/virologia , Etiquetas de Sequências Expressas , Baço/metabolismo , Baço/virologia , Urodelos/genética
17.
Fish Shellfish Immunol ; 43(1): 13-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524497

RESUMO

As an intracellular pattern recognition receptor (PRR), the retinoic acid-inducible gene-I (RIG-I) is responsible for the recognition of cytosolic viral nucleic acids and the production of type I interferons (IFNs). In the present study, an insertion variant of RIG-I with 38 amino acids inserted in the N-terminal CARD2 domain, as well as the typical type, named as RIG-Ia and RIG-Ib respectively were identified in zebrafish. RIG-Ia and RIG-Ib were all up-regulated following the infection of a negative ssRNA virus, the Spring Viremia of Carp Virus (SVCV), and an intracellular Gram-negative bacterial pathogen Edwardsiella tarda, indicating the RLR may have a role in the recognition of both viruses and bacteria. The over-expression of RIG-Ib in cultured fish cells resulted in significant increase in type I IFN promoter activity, and in protection against SVCV infection, whereas the over-expression of RIG-Ia had no direct effect on IFN activation nor antiviral response. Furthermore, it was revealed that both RIG-Ia and RIG-Ib were associated with the downstream molecular mitochondrial antiviral signaling protein, MAVS, and interestingly RIG-Ia when co-transfected with RIG-Ib or MAVS, induced a significantly higher level of type I IFN promoter activity and the expression level of Mx and IRF7, implying that the RIG-Ia may function as an enhancer in the RIG-Ib/MAVS-mediated signaling pathway.


Assuntos
Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/genética , Regulação da Expressão Gênica , Infecções por Rhabdoviridae/veterinária , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência/veterinária , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
18.
Immunology ; 141(2): 192-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24116956

RESUMO

Melanoma differentiation-associated gene 5 (MDA5) is one of the three members in the retinoic acid-inducible gene I-like receptor (RLR) family, which are cytoplasmic pathogen recognition receptors recognizing intracellular viruses. In the present study, MDA5 and its spliced shorter forms, named as MDA5a and MDA5b, were identified in zebrafish. MDA5a and MDA5b can be up-regulated in cell lines following the infection of a negative ssRNA virus, the spring viraemia of carp virus (SVCV), and an intracellular Gram-negative bacterial pathogen Edwardsiella tarda, implying that the RLR may also be able to sense elements released from bacteria. The over-expression of MDA5a and MDA5b in fish cells resulted in significant induction of type I interferon promoter activity and enabled the protection of transfected cells against SVCV infection. Furthermore, the shorter spliced form, MDA5b when co-transfected with MDA5a or mitochondrial antiviral signalling protein (MAVS), induced a significantly higher level of interferon promoter activity, indicating that MDA5b may function as an enhancer in the interaction between MDA5 and MAVS.


Assuntos
RNA Helicases DEAD-box/fisiologia , Interferon Tipo I/genética , Regiões Promotoras Genéticas , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon , Dados de Sequência Molecular , Transdução de Sinais , Viroses/prevenção & controle , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
19.
Front Immunol ; 15: 1419321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081319

RESUMO

Similar to other RNA viruses, grass carp reovirus, the causative agent of the hemorrhagic disease, replicates in cytoplasmic viral inclusion bodies (VIBs), orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of GCRV VIBs are poorly understood. This work demonstrates that GCRV manipulates grass carp oxysterol binding protein 1 (named as gcOSBP1) and vesicle-associated membrane protein-associated protein A/B (named as gcVAP-A/B), 3 components of cholesterol transport pathway, to generate VIBs. By siRNA-mediated knockdown, we demonstrate that gcOSBP1 is an essential host factor for GCRV replication. We reveal that the nonstructural proteins NS80 and NS38 of GCRV interact with gcOSBP1, and that the gcOSBP1 is recruited by NS38 and NS80 for promoting the generation of VIBs. gcOSBP1 increases the expression of gcVAP-A/B and promotes the accumulation of intracellular cholesterol. gcOSBP1 also interacts with gcVAP-A/B for forming gcOSBP1-gcVAP-A/B complexes, which contribute to enhance the accumulation of intracellular cholesterol and gcOSBP1-mediated generation of VIBs. Inhibiting cholesterol accumulation by lovastatin can completely abolish the effects of gcOSBP1 and/or gcVAP-A/B in promoting GCRV infection, suggesting that cholesterol accumulation is vital for gcOSBP1- and/or gcVAP-A/B-mediated GCRV replication. Thus, our results, which highlight that gcOSBP1 functions in the replication of GCRV via its interaction with essential viral proteins for forming VIBs and with host gcVAP-A/B, provide key molecular targets for obtaining anti-hemorrhagic disease grass carp via gene editing technology.


Assuntos
Carpas , Colesterol , Corpos de Inclusão Viral , Receptores de Esteroides , Reoviridae , Replicação Viral , Animais , Reoviridae/fisiologia , Carpas/virologia , Carpas/metabolismo , Corpos de Inclusão Viral/metabolismo , Colesterol/metabolismo , Receptores de Esteroides/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/imunologia , Interações Hospedeiro-Patógeno , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética
20.
Fish Shellfish Immunol ; 35(2): 221-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23659995

RESUMO

Peptidoglycan recognition proteins (PGRPs), which are evolutionarily conserved from insects to mammals, recognize bacterial peptidoglycan (PGN) and function in antibacterial innate immunity. In this study, a short-form PGRP, designated as gcPGRP5 was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP5 is composed of 180 residues with a conserved PGRP domain at the C-terminus. The gcPGRP5 gene consists of four exons and three introns, spacing approximately 2.3 kb in genomic sequence. Phylogenetic analysis demonstrated that the gcPGRP5 is clustered with other PGRP-S identified in teleost fish. The gcPGRP5 is constitutively expressed in all organs/tissues examined, and its expression was significantly induced in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and PGN. Fluorescence analysis showed that gcPGRP5 is distributed in cytoplasm of CIK cells, and cell lysates from CIK cells transfected with pTurbo-gcPGRP5-GFP and ptGFP1-gcPGRP5 plasmids display the binding activity and peptidoglycan-lytic amidase activity toward Lys-PGN from Staphylococcus aureus and Dap-PGN from Bacillus subtilis. Furthermore, heat-shock protein70 (Hsp70), and MyD88, an adaptor molecule in Toll-like receptor pathway, had an increased expression in CIK cells overexpressed with gcPGRP5. It is thus indicated that gcPGRP5 exhibits amidase activity, and also possesses roles in anti-stress, and in Toll-like receptor signaling pathway.


Assuntos
Carpas/genética , Carpas/imunologia , Proteínas de Transporte/genética , Proteínas de Peixes/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Animais , Bacillus subtilis/fisiologia , Sequência de Bases , Carpas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Micrococcus luteus/fisiologia , Dados de Sequência Molecular , Especificidade de Órgãos , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Filogenia , Poli I-C/metabolismo , Poli I-C/farmacologia , Reação em Cadeia da Polimerase/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência/veterinária , Staphylococcus aureus/fisiologia , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa