Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 123(3): 936-944, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940239

RESUMO

Recent evidence has shown that auditory information may be used to improve postural stability, spatial orientation, navigation, and gait, suggesting an auditory component of self-motion perception. To determine how auditory and other sensory cues integrate for self-motion perception, we measured motion perception during yaw rotations of the body and the auditory environment. Psychophysical thresholds in humans were measured over a range of frequencies (0.1-1.0 Hz) during self-rotation without spatial auditory stimuli, rotation of a sound source around a stationary listener, and self-rotation in the presence of an earth-fixed sound source. Unisensory perceptual thresholds and the combined multisensory thresholds were found to be frequency dependent. Auditory thresholds were better at lower frequencies, and vestibular thresholds were better at higher frequencies. Expressed in terms of peak angular velocity, multisensory vestibular and auditory thresholds ranged from 0.39°/s at 0.1 Hz to 0.95°/s at 1.0 Hz and were significantly better over low frequencies than either the auditory-only (0.54°/s to 2.42°/s at 0.1 and 1.0 Hz, respectively) or vestibular-only (2.00°/s to 0.75°/s at 0.1 and 1.0 Hz, respectively) unisensory conditions. Monaurally presented auditory cues were less effective than binaural cues in lowering multisensory thresholds. Frequency-independent thresholds were derived, assuming that vestibular thresholds depended on a weighted combination of velocity and acceleration cues, whereas auditory thresholds depended on displacement and velocity cues. These results elucidate fundamental mechanisms for the contribution of audition to balance and help explain previous findings, indicating its significance in tasks requiring self-orientation.NEW & NOTEWORTHY Auditory information can be integrated with visual, proprioceptive, and vestibular signals to improve balance, orientation, and gait, but this process is poorly understood. Here, we show that auditory cues significantly improve sensitivity to self-motion perception below 0.5 Hz, whereas vestibular cues contribute more at higher frequencies. Motion thresholds are determined by a weighted combination of displacement, velocity, and acceleration information. These findings may help understand and treat imbalance, particularly in people with sensory deficits.


Assuntos
Percepção Auditiva/fisiologia , Percepção de Movimento/fisiologia , Propriocepção/fisiologia , Limiar Sensorial/fisiologia , Localização de Som/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
2.
Lasers Surg Med ; 49(10): 913-927, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28699676

RESUMO

OBJECTIVE: Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. METHODS: Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 µm (CO2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. RESULTS: Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. CONCLUSION: Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Ácidos/efeitos adversos , Esmalte Dentário/cirurgia , Dentina/cirurgia , Lasers de Gás/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Desmineralização do Dente/prevenção & controle , Administração Tópica , Animais , Cariostáticos/administração & dosagem , Cariostáticos/farmacologia , Bovinos , Terapia Combinada , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Esmalte Dentário/patologia , Dentina/efeitos dos fármacos , Dentina/metabolismo , Dentina/patologia , Fluoretos/administração & dosagem , Fluoretos/farmacologia , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Permeabilidade/efeitos dos fármacos , Permeabilidade/efeitos da radiação , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Desmineralização do Dente/induzido quimicamente , Desmineralização do Dente/metabolismo , Desmineralização do Dente/patologia
3.
Semin Hear ; 45(1): 110-122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370520

RESUMO

Maintaining balance involves the combination of sensory signals from the visual, vestibular, proprioceptive, and auditory systems. However, physical and biological constraints ensure that these signals are perceived slightly asynchronously. The brain only recognizes them as simultaneous when they occur within a period of time called the temporal binding window (TBW). Aging can prolong the TBW, leading to temporal uncertainty during multisensory integration. This effect might contribute to imbalance in the elderly but has not been examined with respect to vestibular inputs. Here, we compared the vestibular-related TBW in 13 younger and 12 older subjects undergoing 0.5 Hz sinusoidal rotations about the earth-vertical axis. An alternating dichotic auditory stimulus was presented at the same frequency but with the phase varied to determine the temporal range over which the two stimuli were perceived as simultaneous at least 75% of the time, defined as the TBW. The mean TBW among younger subjects was 286 ms (SEM ± 56 ms) and among older subjects was 560 ms (SEM ± 52 ms). TBW was related to vestibular sensitivity among younger but not older subjects, suggesting that a prolonged TBW could be a mechanism for imbalance in the elderly person independent of changes in peripheral vestibular function.

4.
J Biomed Opt ; 28(9): 094801, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36761935

RESUMO

Significance: Leakage in the interfaces between restorative materials and tooth structure allows for fluid and bacterial acid infiltration, causing restoration failure due to secondary caries. Dentists spend more time replacing composite restorations than placing new ones. Previous in vitro and in vivo studies on enamel and root surfaces using shortwave-infrared (SWIR) and thermal imaging during dehydration with forced air have been promising for assessing lesion activity. Aim: We hypothesized that SWIR reflectance and thermal imaging methods can be used to monitor the activity of secondary caries lesions around composite restorations. The objective of this study was to employ these methods to measure the rate of fluid loss from lesions during dehydration with forced air to assess lesion activity. Approach: Sixty-three extracted human teeth with total of 109 suspected secondary lesions were examined using SWIR and thermal imaging during dehydration. The thickness of the highly mineralized transparent surface layer (TSL) at lesion interfaces indicative of lesion activity was measured by optical coherence tomography (OCT). Micro-computed tomography (MicroCT) was used to further confirm lesion severity and structure. OCT and MicroCT measurements of lesion structure, depth, and severity were correlated with fluid loss rates measured with SWIR reflectance and thermal imaging. Results: TSL thickness measured with OCT correlated with both SWIR reflectance and thermal measurements of rates of fluid loss ( p < 0.05 ). Increasing TSL thickness led to decreased permeability of lesions, potentially indicating full lesion arrest at TSL ≥ 70 µ m . SWIR performed better than thermal imaging for secondary lesion activity assessment, although both methods performed best on smooth surface lesions. Conclusions: Nondestructive SWIR reflectance and OCT imaging methods are promising for clinically monitoring the activity of secondary caries lesions.


Assuntos
Cárie Dentária , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Desidratação , Suscetibilidade à Cárie Dentária , Microtomografia por Raio-X , Cárie Dentária/diagnóstico por imagem
5.
Artigo em Inglês | MEDLINE | ID: mdl-35450401

RESUMO

Secondary caries occurs when leakage in the interfaces between restorative materials and tooth structure allow fluid and bacterial acid infiltration. Thermal imaging coupled with dehydration can be used to measure this increase in fluid permeability for secondary lesions in teeth. Thermal imaging exploits the temperature change due to water evaporation during dehydration to measure the rate of water diffusion from porous lesion areas. Previous in vitro and in vivo thermal imaging studies on enamel and root surfaces have been promising for assessing natural lesion activity. In this study, the rates of dehydration for secondary lesions on extracted teeth were measured. The secondary lesions were also assessed by optical coherence tomography (OCT) and correlated with dehydration rates to determine lesion activity. Future studies with µCT will be used to further confirm lesion severity and structure.

6.
Exp Brain Res ; 210(3-4): 539-47, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21287154

RESUMO

Integration of cues from multiple sensory channels improves our ability to sense and respond to stimuli. Cues arising from a single event may arrive at the brain asynchronously, requiring them to be "bound" in time. The perceptual asynchrony between vestibular and auditory stimuli has been reported to be several times greater than other stimulus pairs. However, these data were collected using electrically evoked vestibular stimuli, which may not provide similar results to those obtained using actual head rotations. Here, we tested whether auditory stimuli and vestibular stimuli consisting of physiologically relevant mechanical rotations are perceived with asynchronies consistent with other sensory systems. We rotated 14 normal subjects about the earth-vertical axis over a raised-cosine trajectory (0.5 Hz, peak velocity 10 deg/s) while isolated from external noise and light. This trajectory minimized any input from extravestibular sources such as proprioception. An 800-Hz, 10-ms auditory tone was presented at stimulus onset asynchronies ranging from 200 ms before to 700 ms after the onset of motion. After each trial, subjects reported whether the stimuli were "simultaneous" or "not simultaneous." The experiment was repeated, with subjects reporting whether the tone or rotation came first. After correction for the time the rotational stimulus took to reach vestibular perceptual threshold, asynchronies spanned from -41 ms (auditory stimulus leading vestibular) to 91 ms (vestibular stimulus leading auditory). These values are significantly lower than those previously reported for stimulus pairs involving electrically evoked vestibular stimuli and are more consistent with timing relationships between pairs of non-vestibular stimuli.


Assuntos
Estimulação Acústica , Propriocepção/fisiologia , Rotação , Limiar Sensorial/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Distribuição Normal , Psicoacústica , Fatores de Tempo , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-30918416

RESUMO

Transparent remineralized surface zones found on natural caries lesions may reduce the permeability to water and plaque generated acids. Near-IR (NIR) reflectance imaging coupled with dehydration can be used to measure changes in the fluid permeability of lesions in enamel and dentin. Previous work demonstrated a negative association between the surface zone thickness and the rate of dehydration in simulated enamel lesions. In this study, the rates of dehydration and thickness of transparent surface layer of coronal lesions of extracted teeth were measured and correlated. Reflectance imaging at NIR wavelengths from 1695-1750 nm, which coincides with higher water absorption and manifests the greatest sensitivity to contrast changes during dehydration measurements, was used to image these enamel lesions. The remineralized surface layer thickness was determined using optical coherence tomography (OCT).

8.
Artigo em Inglês | MEDLINE | ID: mdl-30034077

RESUMO

A transparent highly mineralized outer surface zone is formed on caries lesions during remineralization that reduces the permeability to water and plaque generated acids. However, it has not been established how thick the surface zone should be to inhibit the penetration of these fluids. Near-IR (NIR) reflectance coupled with dehydration can be used to measure changes in the fluid permeability of lesions in enamel and dentin. Based on our previous studies, we postulate that there is a strong correlation between the surface layer thickness and the rate of dehydration. In this study, the rates of dehydration for simulated lesions in enamel with varying remineralization durations were measured. Reflectance imaging at NIR wavelengths from 1400-2300 nm, which coincides with higher water absorption and manifests the greatest sensitivity to contrast changes during dehydration measurements, was used to image simulated enamel lesions. The results suggest that the relationship between surface zone thickness and lesion permeability is highly non-linear, and that a small increase in the surface layer thickness may lead to a significant decrease in permeability.

9.
Proc SPIE Int Soc Opt Eng ; 100442017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28680191

RESUMO

UV and IR lasers can be used to specifically target protein, water, and the mineral phase of dental hard tissues to produce varying changes in surface morphology. In this study, we irradiated enamel and dentin surfaces with various combinations of lasers operating at 0.355, 2.94, and 9.4 µm, exposed those surfaces to topical fluoride, and subsequently evaluated the influence of these changes on surface morphology and permeability. Digital microscopy and surface dehydration rate measurements were used to monitor changes in the samples overtime. The surface morphology and permeability (dehydration rate) varied markedly with the different laser treatments on enamel. On dentin, fluoride was most effective in reducing the permeability.

10.
Laryngoscope ; 122(6): 1379-84, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22473616

RESUMO

OBJECTIVES/HYPOTHESIS: Integration of balance-related cues from the vestibular and other sensory systems requires that they be perceived simultaneously despite arriving asynchronously at the central nervous system. Failure to perform temporal integration of multiple sensory signals represents a novel mechanism to explain symptoms in patients with imbalance. This study tested the ability of normal observers to compensate for sensory asynchronies between vestibular and auditory inputs. STUDY DESIGN: Double-blinded experimental design. METHODS: We performed whole-body rotations about the earth-vertical axis following a raised-cosine trajectory at 0.5 and 1.0 Hz to several peak velocities up to a maximum of 180°/s in five normal subjects. Headphones were used to present a diotic auditory stimulus at various times relative to the onset of the rotation. Subjects were required to indicate which cue occurred first. RESULTS: The vestibular stimulus needed to be presented 61 milliseconds (at a stimulus frequency of 0.5 Hz) and 19 milliseconds (at 1.0 Hz) before the auditory stimulus. Stimuli presented within a window of 300 milliseconds (at 0.5 Hz) to 200 milliseconds (at 1.0 Hz) were judged to be simultaneous. CONCLUSIONS: The central nervous system must accommodate for delays in perception of vestibular and other sensory cues. Inaccurate temporal integration of these inputs represents a novel explanation for symptoms of imbalance.


Assuntos
Estimulação Acústica/métodos , Condução Óssea/fisiologia , Propriocepção/fisiologia , Limiar Sensorial/fisiologia , Vestíbulo do Labirinto/fisiologia , Sinais (Psicologia) , Método Duplo-Cego , Feminino , Humanos , Masculino , Percepção de Movimento/fisiologia , Tempo de Reação , Valores de Referência , Rotação , Osso Temporal/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa