Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 579(7798): 219-223, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132712

RESUMO

Ultrathin two-dimensional (2D) semiconducting layered materials offer great potential for extending Moore's law of the number of transistors in an integrated circuit1. One key challenge with 2D semiconductors is to avoid the formation of charge scattering and trap sites from adjacent dielectrics. An insulating van der Waals layer of hexagonal boron nitride (hBN) provides an excellent interface dielectric, efficiently reducing charge scattering2,3. Recent studies have shown the growth of single-crystal hBN films on molten gold surfaces4 or bulk copper foils5. However, the use of molten gold is not favoured by industry, owing to its high cost, cross-contamination and potential issues of process control and scalability. Copper foils might be suitable for roll-to-roll processes, but are unlikely to be compatible with advanced microelectronic fabrication on wafers. Thus, a reliable way of growing single-crystal hBN films directly on wafers would contribute to the broad adoption of 2D layered materials in industry. Previous attempts to grow hBN monolayers on Cu (111) metals have failed to achieve mono-orientation, resulting in unwanted grain boundaries when the layers merge into films6,7. Growing single-crystal hBN on such high-symmetry surface planes as Cu (111)5,8 is widely believed to be impossible, even in theory. Nonetheless, here we report the successful epitaxial growth of single-crystal hBN monolayers on a Cu (111) thin film across a two-inch c-plane sapphire wafer. This surprising result is corroborated by our first-principles calculations, suggesting that the epitaxial growth is enhanced by lateral docking of hBN to Cu (111) steps, ensuring the mono-orientation of hBN monolayers. The obtained single-crystal hBN, incorporated as an interface layer between molybdenum disulfide and hafnium dioxide in a bottom-gate configuration, enhanced the electrical performance of transistors. This reliable approach to producing wafer-scale single-crystal hBN paves the way to future 2D electronics.

2.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38061057

RESUMO

In this article, a 0.7 nm thick monolayer MoS2nanosheet gate-all-around field effect transistors (NS-GAAFETs) with conformal high-κmetal gate deposition are demonstrated. The device with 40 nm channel length exhibits a high on-state current density of ~410µAµm-1with a large on/off ratio of 6 × 108at drain voltage = 1 V. The extracted contact resistance is 0.48 ± 0.1 kΩµm in monolayer MoS2NS-GAAFETs, thereby showing the channel-dominated performance with the channel length scaling from 80 to 40 nm. The successful demonstration of device performance in this work verifies the integration potential of transition metal dichalcogenides for future logic transistor applications.

3.
Nano Lett ; 23(4): 1306-1312, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745443

RESUMO

A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.

4.
Small ; 18(7): e2106411, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34995002

RESUMO

2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration-corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing.

5.
Nano Lett ; 21(1): 562-568, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33300342

RESUMO

Miniaturized flat and ultrathin optical components with spatial and polarization degrees of freedom are important for optical communications. Here, we use nanostructures that act as tiny phase plates on a dielectric metalens to generate a concentric polarization beam with different orientations along the radial direction. The important discoveries are that (1) the circularly polarized light can be converted into linearly polarized states with a different orientation at near field and that (2) this orientation is strongly correlated to the rotation of the nanostructures on the metalens. Stokes parameters are utilized to investigate the comprehensive polarization states embedded in the optical intensity along the propagation direction. The variation of the spatial polarization states transformed by the dielectric metalens can be properly mapped onto the Poincaré sphere. We believe that the variety of spatial polarizations within a miniaturized configuration provides a new degree of freedom for diverse applications in the future.

6.
Nano Lett ; 21(17): 7363-7370, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424691

RESUMO

The electronic structure and dynamics of 2D transition metal dichalcogenide (TMD) monolayers provide important underpinnings both for understanding the many-body physics of electronic quasi-particles and for applications in advanced optoelectronic devices. However, extensive experimental investigations of semiconducting monolayer TMDs have yielded inconsistent results for a key parameter, the quasi-particle band gap (QBG), even for measurements carried out on the same layer and substrate combination. Here, we employ sensitive time- and angle-resolved photoelectron spectroscopy (trARPES) for a high-quality large-area MoS2 monolayer to capture its momentum-resolved equilibrium and excited-state electronic structure in the weak-excitation limit. For monolayer MoS2 on graphite, we obtain QBG values of ≈2.10 eV at 80 K and of ≈2.03 eV at 300 K, results well-corroborated by the scanning tunneling spectroscopy (STS) measurements on the same material.

7.
Nat Mater ; 19(12): 1300-1306, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32895505

RESUMO

Two-dimensional transition metal dichalcogenide nanoribbons are touted as the future extreme device downscaling for advanced logic and memory devices but remain a formidable synthetic challenge. Here, we demonstrate a ledge-directed epitaxy (LDE) of dense arrays of continuous, self-aligned, monolayer and single-crystalline MoS2 nanoribbons on ß-gallium (III) oxide (ß-Ga2O3) (100) substrates. LDE MoS2 nanoribbons have spatial uniformity over a long range and transport characteristics on par with those seen in exfoliated benchmarks. Prototype MoS2-nanoribbon-based field-effect transistors exhibit high on/off ratios of 108 and an averaged room temperature electron mobility of 65 cm2 V-1 s-1. The MoS2 nanoribbons can be readily transferred to arbitrary substrates while the underlying ß-Ga2O3 can be reused after mechanical exfoliation. We further demonstrate LDE as a versatile epitaxy platform for the growth of p-type WSe2 nanoribbons and lateral heterostructures made of p-WSe2 and n-MoS2 nanoribbons for futuristic electronics applications.

8.
Opt Lett ; 40(10): 2401-4, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393750

RESUMO

We demonstrate an effective approach to grow high-quality thin film (>1 µm) of multifold Ge/Si/Ge composite quantum dots (CQDs) stacked heterostructures for near infrared photodetection and optical interconnect applications. An otherwise random, self-assembly of variable-fold Ge/Si CQDs has been grown on Si through the insertion of Si spacer layers to produce micron-scale-thick, stacked Ge/Si CQD layers with desired QD morphology and composition distribution. The high crystalline quality of these multifold Ge CQD heterostructures is evidenced by low dark current density of 3.68 pA/µm2, superior photoresponsivity of 267 and 220 mA/W under 850 and 980 nm illumination, respectively, and very fast temporal response time of 0.24 ns measured on the Ge/Si CQD photodetectors.

9.
Nanotechnology ; 26(5): 055705, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25590566

RESUMO

Focused ion beam (FIB) deposition produces unwanted particle contamination beyond the deposition point. This is due to the FIB having a Gaussian distribution. This work investigates the spatial extent of this contamination and its influence on the electrical properties of nano-electronic devices. A correlation study is performed on carbon-nanotube (CNT) devices manufactured using FIB deposition. The devices are observed using transmission electron microscopy (TEM) and these images are correlated with device electrical characteristics. To discover how far Pt-nanoparticle contamination occurs along a CNT after FIB electrical contact deposition careful TEM inspections are performed. The results show FIB deposition efficiently improves electrical contact; however, the practice is accompanied by serious particle contamination near deposition points. These contaminants include metal particles and amorphous elements originating from precursor gases and residual water molecules in the vacuum chamber. Pt-contamination extends for approximately 2 µm from the point of FIB contact deposition. These contaminants cause current fluctuations and alter the transport characteristics of devices. It is recommended that nano-device fabrication occurs at a distance greater than 2 µm from the FIB deposition of an electrical contact.

10.
Nano Lett ; 14(8): 4381-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25029207

RESUMO

We report on the first demonstration of broadband tunable, single-mode plasmonic nanolasers (spasers) emitting in the full visible spectrum. These nanolasers are based on a single metal-oxide-semiconductor nanostructure platform comprising of InGaN/GaN semiconductor nanorods supported on an Al2O3-capped epitaxial Ag film. In particular, all-color lasing in subdiffraction plasmonic resonators is achieved via a novel mechanism based on a property of weak size dependence inherent in spasers. Moreover, we have successfully reduced the continuous-wave (CW) lasing thresholds to ultrasmall values for all three primary colors and have clearly demonstrated the possibility of "thresholdless" lasing for the blue plasmonic nanolaser.

11.
Small ; 10(22): 4778-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25115736

RESUMO

A polymer-free technique for generating nanopatterns on both synthesized and exfoliated graphene sheets is proposed and demonstrated. A low-energy (5-30 keV) scanning electron beam with variable repetition rates is used to etch suspended and unsuspended graphene sheets on designed locations. The patterning mechanisms involve a defect-induced knockout process in the initial etching stage and a heat-induced curling process in a later stage. Rough pattern edges appear due to inevitable stochastic knockout of carbon atoms or graphene structure imperfection and can be smoothed by thermal annealing. By using this technique, the minimum feature sizes achieved are about 5 nm for suspended and 7 nm for unsuspended graphene. This study demonstrates a polymer-free direct nanopatterning approach for graphene.

12.
Opt Express ; 22 Suppl 2: A416-24, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922251

RESUMO

Structural and optical properties of thick InGaN layers with strain and composition inhomogeneities are investigated. High resolution x-ray diffractions (XRD) and reciprocal space mapping (RSM) along an asymmetric axis reveal that the In composition inhomogeneity is accompanied by strain relaxations during the growth of thick InGaN layers. According to the structural analysis, the commonly observed double photoluminescence (PL) peaks have been confirmed to be associated with the strain relaxation in thick InGaN films. Temperature-dependent PL measurements further indicate that the relaxed phase in InGaN films exhibits better emission efficiency than the strained phase. Recombination dynamics reveal that the carrier localization effect is more pronounced in the relaxed phase due to the compositional pulling effect. The correlations between emission efficiency and localization effect in thick InGaN films are discussed.

13.
ACS Nano ; 18(9): 6936-6945, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38271620

RESUMO

Multiterminal memtransistors made from two-dimensional (2D) materials have garnered increasing attention in the pursuit of low-power heterosynaptic neuromorphic circuits. However, existing 2D memtransistors tend to necessitate high set voltages (>1 V) or feature defective channels, posing concerns regarding material integrity and intrinsic properties. Herein, we present a monocrystalline monolayer MoS2 memtransistor designed for operation within submicron regimes. Under reverse drain bias sweeps, our experiments reveal memristive behavior within the device, further controllable through modulation of the gate terminal. This controllability facilitates the consistent manifestation of multistate memory effects. Notably, the memtransistor behavior becomes more significant as the channel length diminishes, particularly with channel lengths below 1.6 µm, showcasing an increase in the switching ratio alongside a decrease in the set voltage with the decreasing channel length. Our optimized memtransistor demonstrates the ability to exhibit individual resistance states spanning 5 orders of magnitude, with switching drain voltages of approximately 0.05 V. To elucidate these findings, we investigate hot carrier effects and their interplay with oxide traps within the HfO2 dielectric. This work highlights the importance of memtransisor behavior in highly scaled 2D transistors, particularly those featuring low contact resistances. This understanding holds the potential to tailor memory characteristics essential for the development of energy-efficient neuromorphic devices.

14.
J Phys Chem Lett ; 14(12): 2965-2972, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36939637

RESUMO

Utilization of the excess energy of photoexcitation that is otherwise lost as thermal effects can improve the efficiency of next-generation light-harvesting devices. Multiple exciton generation (MEG) in semiconducting materials yields two or more excitons by absorbing a single high-energy photon, which can break the Shockley-Queisser limit for the conversion efficiency of photovoltaic devices. Recently, monolayer transition metal dichalcogenides (TMDs) have emerged as promising light-harvesting materials because of their high absorption coefficient. Here, we report efficient MEGs with low threshold energy and high (86%) efficiency in a van der Waals (vdW) layered material, MoS2. Through different experimental approaches, we demonstrate the signature of exciton multiplication and discuss the possible origin of decisive MEG in monolayer MoS2. Our results reveal that vdW-layered materials could be a potential candidate for developing mechanically flexible and highly efficient next-generation solar cells and photodetectors.

15.
Arthrosc Tech ; 12(1): e33-e37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36814989

RESUMO

Concomitate supraspinatus and subscapularis tear is not rare, and the suture bridge technique is one of the most effective methods for rotator cuff repair. However, some limitations exist in the use of such a technique for simultaneous supraspinatus and subscapularis repair. We introduce the technique of a merged lateral row for suture bridge rotator cuff repair, in which the lateral suture of the supraspinatus and subscapularis is placed in the greater tuberosity. We believe that this technique can reduce both the duration and cost of surgery and decrease soft-tissue damage. It can also allow the "comma tissue," to be simultaneously repaired.

16.
ACS Nano ; 17(3): 2653-2660, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716244

RESUMO

Contact doping is considered crucial for reducing the contact resistance of two-dimensional (2D) transistors. However, a process for achieving robust contact doping for 2D electronics is lacking. Here, we developed a two-step doping method for effectively doping 2D materials through a defect-repairing process. The method achieves strong and hysteresis-free doping and is suitable for use with the most widely used transition-metal dichalcogenides. Through our method, we achieved a record-high sheet conductance (0.16 mS·sq-1 without gating) of monolayer MoS2 and a high mobility and carrier concentration (4.1 × 1013 cm-2). We employed our robust method for the successful contact doping of a monolayer MoS2 Au-contact device, obtaining a contact resistance as low as 1.2 kΩ·µm. Our method represents an effective means of fabricating high-performance 2D transistors.

17.
Nanoscale ; 15(45): 18233-18240, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943087

RESUMO

Achieving self-powered photodetection without biasing is a notable challenge for photodetectors. In this work, we demonstrate the successful fabrication of large-scale van der Waals epitaxial molybdenum disulfide (MoS2) on a p-GaN/sapphire substrate using a straightforward chemical vapor deposition (CVD) technique. Our research primarily centers on the characterization of these photodetectors produced through this method. The MoS2/GaN heterojunction photodetector showcases a broad and extensive photoresponse spanning from ultraviolet A (UVA) to near-infrared (NIR). When illuminated by a 532 nm laser, its self-powered photoresponse is characterized by a rise time (τr) of ∼18.5 ms and a decay time (τd) of ∼123.2 ms. The photodetector achieves a responsivity (R) of ∼0.13 A W-1 and a specific detectivity (D*) of ∼3.8 × 1010 Jones at zero bias. Additionally, while utilizing a 404 nm laser, the photodetector reaches a maximum R and D* of ∼1.7 × 104 A/W and ∼1.6 × 1013 Jones, respectively, at Vb = 5 V. The operational mechanism of the device can be explained by the diode characteristics involving a tunneling current in the presence of reverse bias. The exceptional performance of these photodetectors can be attributed to the pristine interface between the CVD-grown MoS2 and GaN, providing an impeccably clean tunneling surface. Additionally, our investigation has unveiled that MoS2/GaN heterostructure photodetectors, featuring MoS2 coverage percentages spanning from 20% to 50%, exhibit improved responsivity capabilities at an external bias voltage. As a result, this facile CVD growth technique for MoS2 photodetectors holds significant potential for large-scale production in the manufacturing industry.

18.
Nat Nanotechnol ; 18(11): 1289-1294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474684

RESUMO

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) represent the ultimate thickness for scaling down channel materials. They provide a tantalizing solution to push the limit of semiconductor technology nodes in the sub-1 nm range. One key challenge with 2D semiconducting TMD channel materials is to achieve large-scale batch growth on insulating substrates of single crystals with spatial homogeneity and compelling electrical properties. Recent studies have claimed the epitaxy growth of wafer-scale, single-crystal 2D TMDs on a c-plane sapphire substrate with deliberately engineered off-cut angles. It has been postulated that exposed step edges break the energy degeneracy of nucleation and thus drive the seamless stitching of mono-oriented flakes. Here we show that a more dominant factor should be considered: in particular, the interaction of 2D TMD grains with the exposed oxygen-aluminium atomic plane establishes an energy-minimized 2D TMD-sapphire configuration. Reconstructing the surfaces of c-plane sapphire substrates to only a single type of atomic plane (plane symmetry) already guarantees the single-crystal epitaxy of monolayer TMDs without the aid of step edges. Electrical results evidence the structural uniformity of the monolayers. Our findings elucidate a long-standing question that curbs the wafer-scale batch epitaxy of 2D TMD single crystals-an important step towards using 2D materials for future electronics. Experiments extended to perovskite materials also support the argument that the interaction with sapphire atomic surfaces is more dominant than step-edge docking.

19.
Adv Sci (Weinh) ; 10(17): e2300845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132589

RESUMO

Plumbene, with a structure similar to graphene, is expected to possess a strong spin-orbit coupling and thus enhances its superconducting critical temperature (Tc ). In this work, a buckled plumbene-Au Kagome superstructure grown by depositing Au on Pb(111) is investigated. The superconducting gap monitored by temperature-dependent scanning tunneling microscopy/spectroscopy shows that the buckled plumbene-Au Kagome superstructure not only has an enhanced Tc with respect to that of a monolayer Pb but also possesses a higher value than what owned by a bulk Pb substrate. By combining angle-resolved photoemission spectroscopy with density functional theory, the monolayer Au-intercalated low-buckled plumbene sandwiched between the top Au Kagome layer and the bottom Pb(111) substrate is confirmed and the electron-phonon coupling-enhanced superconductivity is revealed. This work demonstrates that a buckled plumbene-Au Kagome superstructure can enhance superconducting Tc and Rashba effect, effectively triggering the novel properties of a plumbene.

20.
ACS Nano ; 17(13): 12208-12215, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350684

RESUMO

Because of the intrinsic low carrier density of monolayer two-dimensional (2D) materials, doping is crucial for the performance of underlap top-gated 2D devices. However, wet etching of a high-k (dielectric constant) dielectric layer is difficult to implement without causing performance deterioration on the devices; therefore, finding a suitable spacer doping technique for 2D devices is indispensable. In this study, we developed a remote doping (RD) method in which defective SiOx can remotely dope the underlying high-k capped 2D regions without directly contacting these materials. This method achieved a doping density as high as 1.4 × 1013 cm-2 without reducing the mobility of the doped materials; after 1 month, the doping concentration remained as high as 1.2 × 1013 cm-2. Defective SiOx can be used to dope most popular 2D transition-metal dichalcogenides. The low-k properties of SiOx render it ideal for spacer doping, which is very attractive from the perspective of circuit operation. In our experiments, MoS2 and WS2 underlap top-gate devices exhibited 10× and 200× increases in their on-currents, respectively, after being doped with SiOx. These results indicate that SiOx doping can be conducted to manufacture high-performance 2D devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa