Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 11(32): 3896-902, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25917532

RESUMO

3D printing of metallic microarchitectures with controlled internal structures is realized at room temperature in ambient air conditions by the manipulation of metal ion concentration and pulsed electric potentials in the electrolyte meniscus during the meniscus-guided electrodeposition. Precise control of the printing nozzle enables the drawing of complex 3D microarchitectures with well-defined geometries and positions.

2.
Nanoscale ; 12(23): 12568-12577, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32500903

RESUMO

There is a need for point of care diagnostic technologies that are rapid, sensitive, easy to use, and relatively inexpensive. In this article we describe an assay that uses an antibody functionalized nanoporous membrane and superparamagnetic beads to capture and detect human cardiac troponin I (cTnI), which is an important biomarker for acute myocardial infarction (AMI). The membrane assisted force differentiation assay (mFDA) is capable of detecting cTnI at a sensitivity of 0.1 pg ml-1 in 15% serum in less than 16 minutes, which is a significant improvement in performance over conventional lateral flow immuosorbant assays. The speed of this assay results from the rapid concentration of cTnI on the surface of the nanoporous membrane and the use of the magnetic beads to react with the analyte, which rapidly react with the immobilized cTnI. The increased sensitivity of assay results from the use of magnetically controlled forces that reduce the nonspecific background and modify both the on-rate and off-rate. We believe that the improved performance and ease of application of the mFDA will make it useful in the early identification of AMI as well as other diseases based on the detection of 1 pg ml-1 variations in the concentrations cTnI in blood.


Assuntos
Infarto do Miocárdio , Nanoporos , Biomarcadores , Humanos , Imunoensaio , Infarto do Miocárdio/diagnóstico , Troponina I
3.
ACS Nano ; 14(9): 10993-11001, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32702235

RESUMO

The pixel is the minimum unit used to represent or record information in photonic devices. The size of the pixel determines the density of the integrated information, such as the resolution of displays or cameras. Most methods used to produce display pixels are based on two-dimensional patterning of light-emitting materials. However, the brightness of the pixels is limited when they are miniaturized to nanoscale dimensions owing to their limited volume. Herein, we demonstrate the production of three-dimensional (3D) pixels with nanoscale dimensions based on the 3D printing of quantum dots embedded in polymer nanowires. In particular, a femtoliter meniscus was used to guide the solidification of liquid inks to form vertically freestanding nanopillar structures. Based on the 3D layout, we show high-density integration of color pixels, with a lateral dimension of 620 nm and a pitch of 3 µm for each of the red, green, and blue colors. The 3D structure enabled a 2-fold increase in brightness without significant effects on the spatial resolution of the pixels. In addition, we demonstrate individual control of the brightness based on a simple adjustment of the height of the 3D pixels. This method can be used to achieve super-high-resolution display devices and various photonic applications across a range of disciplines.

4.
Nanoscale ; 11(38): 17682-17688, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31539002

RESUMO

Silver (Ag) nanoparticle-based inks are frequently used in printed electronics to form conductive patterns, but often require high-temperature sintering to achieve the optimum electrical conductivity, hindering their use in substrates with poor heat resistance. Herein, a three-dimensional (3D) printing strategy to produce highly conductive Ag 3D architectures that can be sintered at low temperatures is reported. This strategy is based on the additive deposition of Ag nanoparticles and microflakes via extrusion-based 3D printing with the Ag ink that involves poly(acrylic acid) (PAA)-stabilized Ag nanoparticles, Ag microflakes, and NaCl - a destabilizing agent. The designed Ag inks are stable and suitable for ink-extrusion 3D printing. In chemical sintering, Cl- can detach PAA from the Ag nanoparticle surface, enabling nanoparticle coalescence and sintering. An elevated annealing temperature induces increased NaCl density in the printed patterns and accelerates the surface and grain boundary diffusion of Ag atoms, contributing to enhance chemical sintering. On annealing at ∼110 °C for 30 min, the printed structures exhibited an electrical conductivity of ∼9.72 × 104 S cm-1, which is ∼15.6% of that of bulk Ag. Complicated Ag architectures with diverse shapes were successfully fabricated on polymeric substrates. Several structural electronic applications were demonstrated by hybrid 3D printing combining our extrusion-based 3D printing and conventional fused deposition modeling (FDM).

5.
Radiat Oncol ; 14(1): 56, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935400

RESUMO

BACKGROUND: We evaluated the optimal radiotherapy (RT) plan for synchronous bilateral breast cancer (SBBC), especially treatment plans including the regional lymph node (LN) area. METHODS: This study was conducted using 15 patients with SBBC (5 with small breasts, 5 with large breasts, and 5 who underwent a left total mastectomy). The clinical target volume (CTV) was defined as the volume enveloping the bilateral whole breasts/chest wall and left regional LN area. We established the following plans: 1) volumetric-modulated arc therapy (VMAT)-the only plan using two pairs of partial arcs for the whole target volume, 2) VMAT using one partial arc for the left CTV followed by a 3D tangential technique for the right breast (primary hybrid plan), and 3) VMAT for the left CTV followed by a tangential technique using an automatically calculated prescription dose for the right breast, considering the background dose from the left breast VMAT plan (modified hybrid plan). The Tukey test and one-way analysis of variance were used to compare the target coverage and doses to organs at risk (OARs) of the three techniques. RESULTS: For target coverage, the VMAT-only and modified hybrid plans showed comparable target coverage in terms of Dmean (50.33 Gy vs. 50.53 Gy, p = 0.106). The primary hybrid plan showed the largest distribution of the high-dose volume, with V105% of 25.69% and V110% of 6.37% for the planning target volume (PTV) (p < 0.001). For OARs including the lungs, heart, and left anterior descending artery, the percentages of volume at various doses (V5Gy, V10Gy, V20Gy, V30Gy) and Dmean were significantly lower in both the primary and modified hybrid plans compared to those of the VMAT-only plan. These results were consistent in subgroup analyses of breast size and morphological variation. CONCLUSIONS: The modified hybrid plan, using an automatically calculated prescription dose for the right breast and taking into consideration the background dose from the left breast VMAT plan, showed comparable target coverage to that of the VMAT-only plan, and was superior for saving OARs. However, considering that VMAT can be adjusted according to the physician's intention, further evaluation is needed for developing a better plan.


Assuntos
Neoplasias da Mama/radioterapia , Linfonodos/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Dosagem Radioterapêutica
6.
ACS Appl Mater Interfaces ; 11(7): 7123-7130, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30681321

RESUMO

Three-dimensional (3D) printing is a next-generation free-form manufacturing technology for structural electronics. The realization of structural electronic devices necessitates the direct integration of electronic circuits into 3D objects. However, creating highly conductive, high-resolution patterns in 3D remains a major challenge. Here, we report on a metallic 3D printing method that incorporates electroless deposition (ELD) into the direct ink writing method. Our approach consists of two steps: (1) direct ink writing of catalyst microstructures with a functional catalyst ink containing Ag ions and (2) ELD of Cu onto the printed catalyst structures. High-quality, stable Cu 3D printing is achieved through the design of the Ag catalyst ink; hydroxypropyl cellulose is added as both a rheological modifier (printing) and dissolution inhibitor (ELD). As a result, various two-dimensional (2D) and 3D Cu micro circuitries with high conductivity (∼65% of bulk) can be directly integrated onto 3D plastic substrates without the need for high-temperature annealing. A hybrid strategy that combines ELD-assisted 3D printing and conventional fused deposition modeling enables full fabrication of structural electronic devices. This 3D printing strategy can be a low-cost and facile method for obtaining highly conductive metallic 2D and 3D microstructures in structural electronics.

7.
ACS Appl Mater Interfaces ; 10(23): 19999-20005, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29808984

RESUMO

Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R0) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.

8.
ACS Appl Mater Interfaces ; 9(22): 18918-18924, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28541035

RESUMO

Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (>104 S·cm-1) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.

9.
ACS Nano ; 10(9): 8879-87, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27564233

RESUMO

Moving printed electronics to three dimensions essentially requires advanced additive manufacturing techniques yielding multifunctionality materials and high spatial resolution. Here, we report the meniscus-guided 3D printing of highly conductive multiwall carbon nanotube (MWNT) microarchitectures that exploit rapid solidification of a fluid ink meniscus formed by pulling a micronozzle. To achieve high-quality printing with continuous ink flow through a confined nozzle geometry, that is, without agglomeration and nozzle clogging, we design a polyvinylpyrrolidone-wrapped MWNT ink with uniform dispersion and appropriate rheological properties. The developed technique can produce various desired 3D microstructures, with a high MWNT concentration of up to 75 wt % being obtained via post-thermal treatment. Successful demonstrations of electronic components such as sensing transducers, emitters, and radio frequency inductors are also described herein. We expect that the technique presented in this study will facilitate selection of diverse materials in 3D printing and enhance the freedom of integration for advanced conceptual devices.

10.
Adv Mater ; 27(1): 157-61, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25393844

RESUMO

3D printing of reduced graphene oxide (rGO) nanowires is realized at room temperature by local growth of GO at the meniscus formed at a micropipette tip followed by reduction of GO by thermal or chemical treatment. 3D rGO nanowires with diverse and complicated forms are successfully printed, demonstrating their ability to grow in any direction and at the selected sites.

11.
Analyst ; 133(2): 233-40, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18227947

RESUMO

A magnetophoretic fluorescence sensor (MFS) has been developed to rapidly detect dengue virus in serum at a sensitivity that was approximately three orders of magnitude higher than conventional solid phase immunoassays. UV inactivated type 2 dengue virus was first reacted with a mixture of superparamagnetic and fluorescent microparticles functionalised with an anti-type 2 dengue virus monoclonal antibody in 10% fetal calf serum. The magnetic particles were separated from the serum based on their magnetophoretic mobility, and dengue virus was detected by the co-localization of magnetic and fluorescent particles at a specific point in the flow chamber. The MFS was capable of detecting dengue-2 virus at 10 PFU ml(-1) with a reaction time of 15 min. The MFS demonstrated a high specificity in the presence of yellow fever virus, a closely related flavivirus, which also did not produce any detectable increase in background signal. The improved performance of this technique appears to result from the rapid kinetics of the microparticle reaction, improved signal-to-noise ratio resulting from magnetophoretic separation, and rapid fluorescent particle detection. These results suggest that the MFS may be useful in early stage diagnosis of dengue infections, as well as other diseases.


Assuntos
Antígenos Virais/análise , Vírus da Dengue/isolamento & purificação , Dengue Grave/diagnóstico , Animais , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Fluorescência , Humanos , Imunoensaio/métodos , Magnetismo , Microscopia de Fluorescência , Microesferas , Sensibilidade e Especificidade , Vírus da Febre Amarela/isolamento & purificação
12.
Langmuir ; 22(6): 2516-22, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16519449

RESUMO

A novel method is described for the preparation of high-magnetization paramagnetic microparticles functionalized with a controlled density of poly(ethylene glycol) (PEG) and carboxyl groups. These microparticles were synthesized using four steps: (1) creation of an oil-in-water emulsion in which hydrophobic iron oxide nanoparticles and a UV-activated initiator were distributed in hexane; (2) formation of uniform microparticles through emulsion homogenization and evaporation of hexane; (3) functionalization of the microparticle with a PEG-functionalized surfactant and acrylic acid; and (4) polymerization of the microparticles. Characterization of the microparticles with electron microscopy and light scattering revealed that they were composed of densely packed iron oxide nanoparticles and that the size of the microparticles may be controlled through the pore size of the membrane used to homogenize the emulsion. The concentration of surfactant and acrylic acid used in the third processing step was found to determine the surface chemistry, iron content, and magnetization of the microparticles. Increasing the PEG surfactant to acrylic acid ratio resulted in higher PEG surface densities, lower iron content, and lower magnetization. The resulting microparticles were readily functionalized with antibodies and showed a low propensity for nonspecific protein adsorption. We believe that these microparticles will be useful for magnetic tweezers measurements and bioanalytical devices that require microparticles with a high magnetization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa