Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 174(4): 843-855.e19, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30017245

RESUMO

Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor X Retinoide gama/antagonistas & inibidores , Animais , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos SCID , Mutação , Neoplasia Residual/metabolismo , Neoplasia Residual/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cytometry A ; 105(5): 345-355, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385578

RESUMO

Circulating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population found in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application to PBMC smears presents challenges due to the presence of biological and technical artifacts. To address these challenges, we present a robust image analysis pipeline to automate the detection and analysis of CHCs in IF images. The pipeline incorporates quality control to optimize specimen preparation protocols and remove unwanted artifacts, leverages a ß-variational autoencoder (VAE) to learn meaningful latent representations of single-cell images, and employs a support vector machine (SVM) classifier to achieve human-level CHC detection. We created a rigorously labeled IF CHC data set including nine patients and two disease sites with the assistance of 10 annotators to evaluate the pipeline. We examined annotator variation and bias in CHC detection and provided guidelines to optimize the accuracy of CHC annotation. We found that all annotators agreed on CHC identification for only 65% of the cells in the data set and had a tendency to underestimate CHC counts for regions of interest (ROIs) containing relatively large amounts of cells (>50,000) when using the conventional enumeration method. On the other hand, our proposed approach is unbiased to ROI size. The SVM classifier trained on the ß-VAE embeddings achieved an F1 score of 0.80, matching the average performance of human annotators. Our pipeline enables researchers to explore the role of CHCs in cancer progression and assess their potential as a clinical biomarker for metastasis. Further, we demonstrate that the pipeline can identify discrete cellular phenotypes among PBMCs, highlighting its utility beyond CHCs.


Assuntos
Imunofluorescência , Processamento de Imagem Assistida por Computador , Leucócitos Mononucleares , Células Neoplásicas Circulantes , Máquina de Vetores de Suporte , Humanos , Leucócitos Mononucleares/citologia , Processamento de Imagem Assistida por Computador/métodos , Células Neoplásicas Circulantes/patologia , Imunofluorescência/métodos , Neoplasias/patologia , Neoplasias/diagnóstico , Neoplasias/sangue , Análise de Célula Única/métodos
3.
PLoS Comput Biol ; 18(9): e1010505, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178966

RESUMO

Recent state-of-the-art multiplex imaging techniques have expanded the depth of information that can be captured within a single tissue sample by allowing for panels with dozens of markers. Despite this increase in capacity, space on the panel is still limited due to technical artifacts, tissue loss, and long imaging acquisition time. As such, selecting which markers to include on a panel is important, since removing important markers will result in a loss of biologically relevant information, but identifying redundant markers will provide a room for other markers. To address this, we propose computational approaches to determine the amount of shared information between markers and select an optimally reduced panel that captures maximum amount of information with the fewest markers. Here we examine several panel selection approaches and evaluate them based on their ability to reconstruct the full panel images and information within breast cancer tissue microarray datasets using cyclic immunofluorescence as a proof of concept. We show that all methods perform adequately and can re-capture cell types using only 18 of 25 markers (72% of the original panel size). The correlation-based selection methods achieved the best single-cell marker mean intensity predictions with a Spearman correlation of 0.90 with the reduced panel. Using the proposed methods shown here, it is possible for researchers to design more efficient multiplex imaging panels that maximize the amount of information retained with the limited number of markers with respect to certain evaluation metrics and architecture biases.


Assuntos
Neoplasias da Mama , Artefatos , Biomarcadores , Feminino , Humanos
4.
PLoS Comput Biol ; 18(3): e1009953, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294447

RESUMO

The most common kind of cancer among women is breast cancer. Understanding the tumor microenvironment and the interactions between individual cells and cytokines assists us in arriving at more effective treatments. Here, we develop a data-driven mathematical model to investigate the dynamics of key cell types and cytokines involved in breast cancer development. We use time-course gene expression profiles of a mouse model to estimate the relative abundance of cells and cytokines. We then employ a least-squares optimization method to evaluate the model's parameters based on the mice data. The resulting dynamics of the cells and cytokines obtained from the optimal set of parameters exhibit a decent agreement between the data and predictions. We perform a sensitivity analysis to identify the crucial parameters of the model and then perform a local bifurcation on them. The results reveal a strong connection between adipocytes, IL6, and the cancer population, suggesting them as potential targets for therapies.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citocinas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 115(51): 12961-12966, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30518560

RESUMO

Many discoveries in cell biology rely on making specific proteins visible within their native cellular environment. There are various genetically encoded tags, such as fluorescent proteins, developed for fluorescence microscopy (FM). However, there are almost no genetically encoded tags that enable cellular proteins to be observed by both FM and electron microscopy (EM). Herein, we describe a technology for labeling proteins with diverse chemical reporters, including bright organic fluorophores for FM and electron-dense nanoparticles for EM. Our technology uses versatile interacting peptide (VIP) tags, a class of genetically encoded tag. We present VIPER, which consists of a coiled-coil heterodimer formed between the genetic tag, CoilE, and a probe-labeled peptide, CoilR. Using confocal FM, we demonstrate that VIPER can be used to highlight subcellular structures or to image receptor-mediated iron uptake. Additionally, we used VIPER to image the iron uptake machinery by correlative light and EM (CLEM). VIPER compared favorably with immunolabeling for imaging proteins by CLEM, and is an enabling technology for protein targets that cannot be immunolabeled. VIPER is a versatile peptide tag that can be used to label and track proteins with diverse chemical reporters observable by both FM and EM instrumentation.


Assuntos
Nanopartículas/análise , Coloração e Rotulagem/métodos , Animais , Células CHO , Linhagem Celular , Cricetulus , Humanos , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos
6.
Mol Carcinog ; 59(7): 701-712, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134153

RESUMO

A hallmark of ductal carcinoma in situ (DCIS) progression is a loss of the surrounding ductal myoepithelium. However, whether compromise in myoepithelial differentiation, rather than overt cellular loss, can be used to predict the risk of DCIS progression is unknown. Here we address this question utilizing pure and mixed DCIS cases (N = 30) as surrogates for DCIS at low and high risk for progression, respectively. We used multiplex immunohistochemical staining to evaluate the relationship between myoepithelial cell differentiation and lymphoid immune cell types associated with poor prognostic DCIS. Our results show that myoepithelial calponin-1 discriminates between pure and mixed DCIS lesions better than histological subtype, presence of necrosis, or nuclear grade. Additionally, focal loss of myoepithelial cells associated with increased PD-1+CD8+ T cells, which suggests a link between the myoepithelium and immune surveillance. To identify associations between calponin-1 expression and immune response, we performed unsupervised hierarchical clustering of myoepithelial and immune cell biomarkers on 219 DCIS lesions from 30 cases. Notably, the majority of pure (low-risk) DCIS lesions clustered in a high calponin-1, T cell low group, whereas the majority of mixed (high-risk) DCIS lesions clustered in a low calponin-1, T cell high group, specifically with CD8+ and PD-1+CD8+ T cells. However, a subset of pure DCIS lesions had a similar calponin-1 and immune signature as the majority of mixed DCIS lesions, which have low calponin-1 and T cell enrichment-raising the possibility that these pure DCIS lesions might be at a high risk for progression.


Assuntos
Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal de Mama/metabolismo , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Calponinas
7.
Cytometry A ; 95(4): 389-398, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714674

RESUMO

Image cytometry enables quantitative cell characterization with preserved tissue architecture; thus, it has been highlighted in the advancement of multiplex immunohistochemistry (IHC) and digital image analysis in the context of immune-based biomarker monitoring associated with cancer immunotherapy. However, one of the challenges in the current image cytometry methodology is a technical limitation in the segmentation of nuclei and cellular components particularly in heterogeneously stained cancer tissue images. To improve the detection and specificity of single-cell segmentation in hematoxylin-stained images (which can be utilized for recently reported 12-biomarker chromogenic sequential multiplex IHC), we adapted a segmentation algorithm previously developed for hematoxlin and eosin-stained images, where morphological features are extracted based on Gabor-filtering, followed by stacking of image pixels into n-dimensional feature space and unsupervised clustering of individual pixels. Our proposed method showed improved sensitivity and specificity in comparison with standard segmentation methods. Replacing previously proposed methods with our method in multiplex IHC/image cytometry analysis, we observed higher detection of cell lineages including relatively rare TH 17 cells, further enabling sub-population analysis into TH 1-like and TH 2-like phenotypes based on T-bet and GATA3 expression. Interestingly, predominance of TH 2-like TH 17 cells was associated with human papilloma virus (HPV)-negative status of oropharyngeal squamous cell carcinoma of head and neck, known as a poor-prognostic subtype in comparison with HPV-positive status. Furthermore, TH 2-like TH 17 cells in HPV-negative head and neck cancer tissues were spatiotemporally correlated with CD66b+ granulocytes, presumably associated with an immunosuppressive microenvironment. Our cell segmentation method for multiplex IHC/image cytometry potentially contributes to in-depth immune profiling and spatial association, leading to further tissue-based biomarker exploration. © 2019 International Society for Advancement of Cytometry.


Assuntos
Algoritmos , Citometria por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Análise de Célula Única/métodos , Células Th17/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Núcleo Celular/patologia , Diagnóstico Diferencial , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Hematoxilina/química , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Mesotelioma/diagnóstico , Mesotelioma/imunologia , Mesotelioma/patologia , Mesotelioma Maligno , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/imunologia , Neoplasias Pleurais/patologia , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Th17/citologia , Microambiente Tumoral/imunologia
9.
BMC Bioinformatics ; 15: 400, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25495633

RESUMO

BACKGROUND: We consider the problem of reconstructing a gene regulatory network structure from limited time series gene expression data, without any a priori knowledge of connectivity. We assume that the network is sparse, meaning the connectivity among genes is much less than full connectivity. We develop a method for network reconstruction based on compressive sensing, which takes advantage of the network's sparseness. RESULTS: For the case in which all genes are accessible for measurement, and there is no measurement noise, we show that our method can be used to exactly reconstruct the network. For the more general problem, in which hidden genes exist and all measurements are contaminated by noise, we show that our method leads to reliable reconstruction. In both cases, coherence of the model is used to assess the ability to reconstruct the network and to design new experiments. We demonstrate that it is possible to use the coherence distribution to guide biological experiment design effectively. By collecting a more informative dataset, the proposed method helps reduce the cost of experiments. For each problem, a set of numerical examples is presented. CONCLUSIONS: The method provides a guarantee on how well the inferred graph structure represents the underlying system, reveals deficiencies in the data and model, and suggests experimental directions to remedy the deficiencies.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes , Modelos Biológicos , Transdução de Sinais , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Fatores de Tempo
10.
Commun Biol ; 7(1): 409, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570598

RESUMO

Cyclic Immunofluorescence (CyCIF) can quantify multiple biomarkers, but panel capacity is limited by technical challenges. We propose a computational panel reduction approach that can impute the information content from 25 markers using only 9 markers, learning co-expression and morphological patterns while concurrently increasing speed and panel content and decreasing cost. We demonstrate strong correlations in predictions and generalizability across breast and colorectal cancer, illustrating applicability of our approach to diverse tissue types.


Assuntos
Diagnóstico por Imagem , Imunofluorescência
11.
Sci Rep ; 14(1): 7350, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538742

RESUMO

Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Células Híbridas/patologia , Anticorpos , Fenótipo
12.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293173

RESUMO

Extracellular signals induce changes to molecular programs that modulate multiple cellular phenotypes, including proliferation, motility, and differentiation status. The connection between dynamically adapting phenotypic states and the molecular programs that define them is not well understood. Here we develop data-driven models of single-cell phenotypic responses to extracellular stimuli by linking gene transcription levels to "morphodynamics" - changes in cell morphology and motility observable in time-lapse image data. We adopt a dynamics-first view of cell state by grouping single-cell trajectories into states with shared morphodynamic responses. The single-cell trajectories enable development of a first-of-its-kind computational approach to map live-cell dynamics to snapshot gene transcript levels, which we term MMIST, Molecular and Morphodynamics-Integrated Single-cell Trajectories. The key conceptual advance of MMIST is that cell behavior can be quantified based on dynamically defined states and that extracellular signals alter the overall distribution of cell states by altering rates of switching between states. We find a cell state landscape that is bound by epithelial and mesenchymal endpoints, with distinct sequences of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) intermediates. The analysis yields predictions for gene expression changes consistent with curated EMT gene sets and provides a prediction of thousands of RNA transcripts through extracellular signal-induced EMT and MET with near-continuous time resolution. The MMIST framework leverages true single-cell dynamical behavior to generate molecular-level omics inferences and is broadly applicable to other biological domains, time-lapse imaging approaches and molecular snapshot data.

13.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645765

RESUMO

CyCIF quantifies multiple biomarkers, but panel capacity is compromised by technical challenges including tissue loss. We propose a computational panel reduction, inferring surrogate CyCIF data from a subset of biomarkers. Our model reconstructs the information content from 25 markers using only 9 markers, learning co-expression and morphological patterns. We demonstrate strong correlations in predictions and generalizability across breast and colorectal cancer tissue microarrays, illustrating broader applicability to diverse tissue types.

14.
Res Sq ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790506

RESUMO

CyCIF can quantify multiple biomarkers, but panel capacity is limited by technical challenges. We propose a computational panel reduction approach that can impute the information content from 25 markers using only 9 markers, learning co-expression and morphological patterns while concurrently increasing speed and panel content and decreasing cost. We demonstrate strong correlations in predictions and generalizability across breast and colorectal cancer, illustrating applicability of our approach to diverse tissue types.

15.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865198

RESUMO

Identifying individual cells or nuclei is often the first step in the analysis of multiplex tissue imaging (MTI) data. Recent efforts to produce plug-and-play, end-to-end MTI analysis tools such as MCMICRO1- though groundbreaking in their usability and extensibility - are often unable to provide users guidance regarding the most appropriate models for their segmentation task among an endless proliferation of novel segmentation methods. Unfortunately, evaluating segmentation results on a user's dataset without ground truth labels is either purely subjective or eventually amounts to the task of performing the original, time-intensive annotation. As a consequence, researchers rely on models pre-trained on other large datasets for their unique tasks. Here, we propose a methodological approach for evaluating MTI nuclei segmentation methods in absence of ground truth labels by scoring relatively to a larger ensemble of segmentations. To avoid potential sensitivity to collective bias from the ensemble approach, we refine the ensemble via weighted average across segmentation methods, which we derive from a systematic model ablation study. First, we demonstrate a proof-of-concept and the feasibility of the proposed approach to evaluate segmentation performance in a small dataset with ground truth annotation. To validate the ensemble and demonstrate the importance of our method-specific weighting, we compare the ensemble's detection and pixel-level predictions - derived without supervision - with the data's ground truth labels. Second, we apply the methodology to an unlabeled larger tissue microarray (TMA) dataset, which includes a diverse set of breast cancer phenotypes, and provides decision guidelines for the general user to more easily choose the most suitable segmentation methods for their own dataset by systematically evaluating the performance of individual segmentation approaches in the entire dataset.

16.
Commun Biol ; 6(1): 484, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142678

RESUMO

Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, but the quantitative analysis of morphological changes over time remains challenging. Here, we exploit the concept of "trajectory embedding" to analyze cellular behavior using morphological feature trajectory histories-that is, multiple time points simultaneously, rather than the more common practice of examining morphological feature time courses in single timepoint (snapshot) morphological features. We apply this approach to analyze live-cell images of MCF10A mammary epithelial cells after treatment with a panel of microenvironmental perturbagens that strongly modulate cell motility, morphology, and cell cycle behavior. Our morphodynamical trajectory embedding analysis constructs a shared cell state landscape revealing ligand-specific regulation of cell state transitions and enables quantitative and descriptive models of single-cell trajectories. Additionally, we show that incorporation of trajectories into single-cell morphological analysis enables (i) systematic characterization of cell state trajectories, (ii) better separation of phenotypes, and (iii) more descriptive models of ligand-induced differences as compared to snapshot-based analysis. This morphodynamical trajectory embedding is broadly applicable to the quantitative analysis of cell responses via live-cell imaging across many biological and biomedical applications.


Assuntos
Diagnóstico por Imagem , Análise de Célula Única , Ligantes , Movimento Celular , Células Epiteliais
17.
Methods Cell Biol ; 177: 1-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451763

RESUMO

New developments in electron microscopy technology, improved efficiency of detectors, and artificial intelligence applications for data analysis over the past decade have increased the use of volume electron microscopy (vEM) in the life sciences field. Moreover, sample preparation methods are continuously being modified by investigators to improve final sample quality, increase electron density, combine imaging technologies, and minimize the introduction of artifacts into specimens under study. There are a variety of conventional bench protocols that a researcher can utilize, though most of these protocols require several days. In this work, we describe the utilization of an automated specimen processor, the mPrep™ ASP-2000™, to prepare samples for vEM that are compatible with focused ion beam scanning electron microscopy (FIB-SEM), serial block face scanning electron microscopy (SBF-SEM), and array tomography (AT). The protocols described here aimed for methods that are completed in a much shorter period of time while minimizing the exposure of the operator to hazardous and toxic chemicals and improving the reproducibility of the specimens' heavy metal staining, all without compromising the quality of the data acquired using backscattered electrons during SEM imaging. As a control, we have included a widely used sample bench protocol and have utilized it as a comparator for image quality analysis, both qualitatively and using image quality analysis metrics.


Assuntos
Inteligência Artificial , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Volume
18.
Front Bioinform ; 3: 1275402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928169

RESUMO

Introduction: Tissue-based sampling and diagnosis are defined as the extraction of information from certain limited spaces and its diagnostic significance of a certain object. Pathologists deal with issues related to tumor heterogeneity since analyzing a single sample does not necessarily capture a representative depiction of cancer, and a tissue biopsy usually only presents a small fraction of the tumor. Many multiplex tissue imaging platforms (MTIs) make the assumption that tissue microarrays (TMAs) containing small core samples of 2-dimensional (2D) tissue sections are a good approximation of bulk tumors although tumors are not 2D. However, emerging whole slide imaging (WSI) or 3D tumor atlases that use MTIs like cyclic immunofluorescence (CyCIF) strongly challenge this assumption. In spite of the additional insight gathered by measuring the tumor microenvironment in WSI or 3D, it can be prohibitively expensive and time-consuming to process tens or hundreds of tissue sections with CyCIF. Even when resources are not limited, the criteria for region of interest (ROI) selection in tissues for downstream analysis remain largely qualitative and subjective as stratified sampling requires the knowledge of objects and evaluates their features. Despite the fact TMAs fail to adequately approximate whole tissue features, a theoretical subsampling of tissue exists that can best represent the tumor in the whole slide image. Methods: To address these challenges, we propose deep learning approaches to learn multi-modal image translation tasks from two aspects: 1) generative modeling approach to reconstruct 3D CyCIF representation and 2) co-embedding CyCIF image and Hematoxylin and Eosin (H&E) section to learn multi-modal mappings by a cross-domain translation for minimum representative ROI selection. Results and discussion: We demonstrate that generative modeling enables a 3D virtual CyCIF reconstruction of a colorectal cancer specimen given a small subset of the imaging data at training time. By co-embedding histology and MTI features, we propose a simple convex optimization for objective ROI selection. We demonstrate the potential application of ROI selection and the efficiency of its performance with respect to cellular heterogeneity.

19.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662330

RESUMO

Circulating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population identified in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application on PBMC smears presents challenges due to the presence of biological and technical artifacts. To address these challenges, we present a robust image analysis pipeline to automate the detection and analyses of CHCs in IF images. The pipeline incorporates quality control to optimize specimen preparation protocols and remove unwanted artifacts, leverages a ß-variational autoencoder (VAE) to learn meaningful latent representations of single-cell images and employs a support vector machine (SVM) classifier to achieve human-level CHC detection. We created a rigorously labeled IF CHC dataset including 9 patients and 2 disease sites with the assistance of 10 annotators to evaluate the pipeline. We examined annotator variation and bias in CHC detection and then provided guidelines to optimize the accuracy of CHC annotation. We found that all annotators agreed on CHC identification for only 65% of the cells in the dataset and had a tendency to underestimate CHC counts for regions of interest (ROI) containing relatively large amounts of cells (>50,000) when using conventional enumeration methods. On the other hand, our proposed approach is unbiased to ROI size. The SVM classifier trained on the ß-VAE encodings achieved an F1 score of 0.80, matching the average performance of annotators. Our pipeline enables researchers to explore the role of CHCs in cancer progression and assess their potential as a clinical biomarker for metastasis. Further, we demonstrate that the pipeline can identify discrete cellular phenotypes among PBMCs, highlighting its utility beyond CHCs.

20.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865274

RESUMO

Imaging mass cytometry (IMC) is a powerful multiplexed tissue imaging technology that allows simultaneous detection of more than 30 makers on a single slide. It has been increasingly used for singlecell-based spatial phenotyping in a wide range of samples. However, it only acquires a small, rectangle field of view (FOV) with a low image resolution that hinders downstream analysis. Here, we reported a highly practical dual-modality imaging method that combines high-resolution immunofluorescence (IF) and high-dimensional IMC on the same tissue slide. Our computational pipeline uses the whole slide image (WSI) of IF as a spatial reference and integrates small FOVs IMC into a WSI of IMC. The high-resolution IF images enable accurate single-cell segmentation to extract robust high-dimensional IMC features for downstream analysis. We applied this method in esophageal adenocarcinoma of different stages, identified the single-cell pathology landscape via reconstruction of WSI IMC images, and demonstrated the advantage of the dual-modality imaging strategy. Motivation: Highly multiplexed tissue imaging allows visualization of the spatially resolved expression of multiple proteins at the single-cell level. Although imaging mass cytometry (IMC) using metal isotope-conjugated antibodies has a significant advantage of low background signal and absence of autofluorescence or batch effect, it has a low resolution that hampers accurate cell segmentation and results in inaccurate feature extraction. In addition, IMC only acquires mm 2 -sized rectangle regions, which limits its application and efficiency when studying larger clinical samples with non-rectangle shapes. To maximize the research output of IMC, we developed the dual-modality imaging method based on a highly practical and technical improvement requiring no extra specialized equipment or agents and proposed a comprehensive computational pipeline that combines IF and IMC. The proposed method greatly improves the accuracy of cell segmentation and downstream analysis and is able to obtain whole slide image IMC to capture the comprehensive cellular landscape of large tissue sections.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa