Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244445

RESUMO

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.


Assuntos
Hidrocarbonetos Aromáticos/química , Pentanos/química , Bioensaio , Cristalografia por Raios X , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Pentanos/síntese química , Estereoisomerismo
2.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566317

RESUMO

Excessive inflammatory reaction aggravates brain injury and hinders the recovery of neural function in nervous system diseases. Microglia, as the major players of neuroinflammation, control the progress of the disease. There is an urgent need for effective non-invasive therapy to treat neuroinflammation mediated by microglia. However, the lack of specificity of anti-inflammatory agents and insufficient drug dose penetrating into the brain lesion area are the main problems. Here, we evaluated a series of calixarenes and found that among them the self-assembling architecture of amphiphilic sulfonatocalix[8]arene (SC8A12C) had the most potent ability to suppress neuroinflammation in vitro and in vivo. Moreover, SC8A12C assemblies were internalized into microglia through macropinocytosis. In addition, after applying the SC8A12C assemblies to the exposed brain tissue, we observed that SC8A12C assemblies penetrated into the brain parenchyma and eliminated the inflammatory factor storm, thereby restoring neurobiological functions in a mouse model of traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Calixarenos , Animais , Lesões Encefálicas Traumáticas/patologia , Calixarenos/farmacologia , Calixarenos/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias
3.
Adv Sci (Weinh) ; 9(6): e2104349, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994113

RESUMO

Radiotherapy (RT) has been viewed as one of the most effective and extensively applied curatives in clinical cancer therapy. However, the radioresistance of tumor severely discounts the radiotherapy outcomes. Here, an innovative supramolecular radiotherapy strategy, based on the complexation of a hypoxia-responsive macrocycle with small-molecule radiosensitizer, is reported. To exemplify this tactic, a carboxylated azocalix[4]arene (CAC4A) is devised as molecular container to quantitatively package tumor sensitizer banoxantrone dihydrochloride (AQ4N) through reversible host-guest interaction. Benefited from the selective reduction of azo functional groups under hypoxic microenvironment, the supramolecular prodrug CAC4A•AQ4N exhibits high tumor accumulation and efficient cellular internalization, thereby significantly amplifying radiation-mediated tumor destruction without appreciable systemic toxicity. More importantly, this supramolecular radiotherapy strategy achieves an ultrahigh sensitizer enhancement ratio (SER) value of 2.349, which is the supreme among currently reported noncovalent-based radiosensitization approach. Further development by applying different radiosensitizing drugs can make this supramolecular strategy become a general platform for boosting therapeutic effect in cancer radiotherapies, tremendously promising for clinical translation.


Assuntos
Hipóxia , Compostos Macrocíclicos/uso terapêutico , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Humanos
4.
Nanoscale ; 13(36): 15362-15368, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34498658

RESUMO

As an important biomarker, the overexpressed spermine has been widely investigated for cancer diagnosis and treatment. However, bioimaging of spermine in living cells is still a formidable challenge. Herein, we design a supramolecular imaging ensemble for spermine by the host-guest complexation of amphiphilic sulfonatocalix[5]arene (SC5A12C) assembly with lucigenin (LCG). Strong binding ability and complexation-induced fluorescence quenching properties enable SC5A12C to quench the fluorescence of LCG dramatically and to recover it completely due to the competition of overexpressed spermine in cancer cells. SC5A12C also exhibits excellent biocompatibility and promotes cellular uptake due to its ability to form ultra-stable assembly. Co-assembling folate further promotes the cellular uptake of folate receptor overexpressed cancer cells, contributing to enhanced bioimaging.


Assuntos
Neoplasias , Espermina , Neoplasias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa