Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 125: 103842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924917

RESUMO

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.


Assuntos
Nociceptividade , Fenelzina , Animais , Camundongos , Masculino , Fenelzina/farmacologia , Proteoma , Proteínas do Tecido Nervoso
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244445

RESUMO

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.


Assuntos
Hidrocarbonetos Aromáticos/química , Pentanos/química , Bioensaio , Cristalografia por Raios X , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Pentanos/síntese química , Estereoisomerismo
3.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566317

RESUMO

Excessive inflammatory reaction aggravates brain injury and hinders the recovery of neural function in nervous system diseases. Microglia, as the major players of neuroinflammation, control the progress of the disease. There is an urgent need for effective non-invasive therapy to treat neuroinflammation mediated by microglia. However, the lack of specificity of anti-inflammatory agents and insufficient drug dose penetrating into the brain lesion area are the main problems. Here, we evaluated a series of calixarenes and found that among them the self-assembling architecture of amphiphilic sulfonatocalix[8]arene (SC8A12C) had the most potent ability to suppress neuroinflammation in vitro and in vivo. Moreover, SC8A12C assemblies were internalized into microglia through macropinocytosis. In addition, after applying the SC8A12C assemblies to the exposed brain tissue, we observed that SC8A12C assemblies penetrated into the brain parenchyma and eliminated the inflammatory factor storm, thereby restoring neurobiological functions in a mouse model of traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Calixarenos , Animais , Lesões Encefálicas Traumáticas/patologia , Calixarenos/farmacologia , Calixarenos/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias
4.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778412

RESUMO

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil ® ). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N -terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.

5.
Foods ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563986

RESUMO

In this study, probiotic bacteria as a new post-processing approach to reduce acrylamide (AA) was investigated. The AA reduction ability of selected Lactobacillus strains and Bifidobacterium strains was demonstrated in (a) AA chemical solutions; (b) food matrices (biscuits and chips) and (c) in vitro digestion. The findings showed tested bacteria exhibited AA reduction ability which was probiotic strain-, AA concentration-, probiotic concentration-, incubation time- and pH-dependent. L. acidophilus LA 45 and B. longum ATCC 15707 (109 CFU/mL) showed the highest AA reduction (86.85 and 88.85%, respectively) when exposed to 350 ng/mL AA solution for 8 h. The findings also demonstrated that AA reduction ability of selected probiotic strains was pH- and food matrix-dependent in both food matrices (9.45-22.15%) and in vitro digestion model (10.91-21.29%). This study showed probiotic bacteria can lower AA bioaccessibility under simulated digestion.

6.
Adv Sci (Weinh) ; 9(6): e2104349, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994113

RESUMO

Radiotherapy (RT) has been viewed as one of the most effective and extensively applied curatives in clinical cancer therapy. However, the radioresistance of tumor severely discounts the radiotherapy outcomes. Here, an innovative supramolecular radiotherapy strategy, based on the complexation of a hypoxia-responsive macrocycle with small-molecule radiosensitizer, is reported. To exemplify this tactic, a carboxylated azocalix[4]arene (CAC4A) is devised as molecular container to quantitatively package tumor sensitizer banoxantrone dihydrochloride (AQ4N) through reversible host-guest interaction. Benefited from the selective reduction of azo functional groups under hypoxic microenvironment, the supramolecular prodrug CAC4A•AQ4N exhibits high tumor accumulation and efficient cellular internalization, thereby significantly amplifying radiation-mediated tumor destruction without appreciable systemic toxicity. More importantly, this supramolecular radiotherapy strategy achieves an ultrahigh sensitizer enhancement ratio (SER) value of 2.349, which is the supreme among currently reported noncovalent-based radiosensitization approach. Further development by applying different radiosensitizing drugs can make this supramolecular strategy become a general platform for boosting therapeutic effect in cancer radiotherapies, tremendously promising for clinical translation.


Assuntos
Hipóxia , Compostos Macrocíclicos/uso terapêutico , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Humanos
7.
Nanoscale ; 13(36): 15362-15368, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34498658

RESUMO

As an important biomarker, the overexpressed spermine has been widely investigated for cancer diagnosis and treatment. However, bioimaging of spermine in living cells is still a formidable challenge. Herein, we design a supramolecular imaging ensemble for spermine by the host-guest complexation of amphiphilic sulfonatocalix[5]arene (SC5A12C) assembly with lucigenin (LCG). Strong binding ability and complexation-induced fluorescence quenching properties enable SC5A12C to quench the fluorescence of LCG dramatically and to recover it completely due to the competition of overexpressed spermine in cancer cells. SC5A12C also exhibits excellent biocompatibility and promotes cellular uptake due to its ability to form ultra-stable assembly. Co-assembling folate further promotes the cellular uptake of folate receptor overexpressed cancer cells, contributing to enhanced bioimaging.


Assuntos
Neoplasias , Espermina , Neoplasias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa